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RESUME

Dans cet article, nous quantifions qualitativement et quantitativement la précision
de la mesure de la volatilité intégrée par la volatilité réalisée quand la fréquence
d’observations est fixée. Nous commencons par caractériser pour une diffusion
générale la difféerence entre les volatilités réalisée et intégrée pour une fréquence
d’observations donnée. Ensuite, nous calculons I'espérance et la variance de ce bruit
ainsi que sa corrélation avec la volatilité intégrée en supposant que la diffusion est un
modele a volatilité stochastique par fonctions propres de Meddahi (2001a). Ce modéle
contient, comme exemples particuliers, les modéles de diffusion log-normale, affine et
GARCH. En utilisant certains résultats empiriques, nous montrons que |'écart-type du
bruit n'est pas négligeable par rapport a la moyenne et a I'écart-type de la volatilité
intégrée méme si on considere des rendements a cinq minutes. Nous proposons aussi
une approche simple pour extraire I'information sur la volatilité intégrée contenue dans
les rendements via I'effet de levier.

Mots clés : volatilité intégrée, volatilité réalisée, générateur infinitésimal, modéles a
volatilité stochastique par fonctions propres, effet de levier, moments exacts

ABSTRACT

In this paper, we provide both qualitative and quantitative measures of the cost of
measuring the integrated volatility by the realized volatility when the frequency of
observation is fixed. We start by characterizing for a general diffusion the difference
between the realized and the integrated volatilities for a given frequency of
observations. Then, we compute the mean and variance of this noise and the
correlation between the noise and the integrated volatility in the Eigenfunction
Stochastic Volatility model of Meddahi (2001a). This model has, as special examples,
log-normal, affine, and GARCH diffusion models. Using some previous empirical works,
we show that the standard deviation of the noise is not negligible with respect to the
mean and the standard deviation of the integrated volatility, even if one considers
returns at five minutes. We also propose a simple approach to capture the information
about the integrated volatility contained in the returns through the leverage effect.

Key words : integrated  volatility, realized volatility, infinitesimal generator,
eigenfunction stochastic volatility models, leverage effect, exact moments



1 Introduction

Several recent works highlighted the importance of using the high frequency data to measure
the volatility. These include Andersen and Bollerslev (1998), Andersen, Bollerslev, Diebold and
Ebens (2001), Andersen, Bollerslev, Diebold and Labys (2001a, ABDL hereafter), Barndorff-
Nielsen and Shephard (2001a-b), Taylor and Xu (1997) and Zhou (1996); for a survey on
this literature, see Andersen, Bollerslev and Diebold (2001) and Dacorogna et al. (2001).
Typically, when one is interested on the volatility over, say, a day, then these papers propose
to measure this volatility by the sum of the intra-daily squared returns, like returns over five
or thirty minutes. This measure of volatility is called the realized volatility. The theoretical
justification is that when the length of the intra-daily returns tends to zero, this sum tends in
probability to the quadratic variation of the underlying diffusion process (ABDL, 2001a). This
quadratic variation plays a central role in the option pricing literature. In particular, when
there are no jumps, the quadratic variation corresponds to the integrated volatility highlighted
by Hull and White (1987).

An important characteristic of the high frequency data is the presence of microstructure
effects. More precisely, the observed prices (or quotes) are in general the bid and/or the ask
ones; they are ticked, i.e. the difference between two consecutive prices (quotes) is in {Ai, 7 €
Z}, where A is a fraction of, say, a Dollar; zero returns are observed frequently. Therefore,
using data at the highest available frequency to measure the volatility is not necessarily the best
solution since such measures may be contaminated by these microstructure effects. The solution
adopted by the literature is to consider intra-daily returns over an intermediate frequency. For
instance, when ABDL (2001b) address the issue of forecasting the volatility by using realized
volatilities, the latter were based on intra-daily returns over thirty minutes.

The main objective of the paper is to provide both qualitative and quantitative measures of
the cost of measuring the integrated volatility by the realized volatility for a given frequency.
In particular, we characterize the quality of the measures when one moves from a frequency to
another one.

In all the paper, we will neither consider microstructure effects (see Bai, Russell and Tiao,
2001) nor parameters uncertainty. We will assume that the underlying data generating pro-
cess is a continuous time model. We will derive the properties of the difference between the
integrated volatility and the realized volatility computed with intra-daily returns for a given
frequency. Thus, our study may be viewed as a benchmark when one considers the difference
between the integrated and realized volatilities. In the sequel, we call the noise the random
variable defined as the realized volatility minus the integrated volatility. Hence, we adopt
the traditional terminology of the econometric literature when a variable of interest, here the
integrated volatility, is observed with a measurement error, the observation being the realized

volatility.



We start by characterizing this noise term in a general setting. The form of the noise allows
us to give three of its qualitative characteristics. First, the unconditional mean of the noise
is nonzero if and only if the drift of the diffusion characterizing the asset returns is nonzero.
Second, the noise is heteroskedastic. In particular, its conditional variance is correlated with the
integrated and realized volatilities. Third, the noise is correlated with the integrated volatility
if and only if there is leverage effect or the drift depends on the instantaneous volatility.

In order to quantify these three characteristics, we specify the continuous time model. We
assume that the underlying continuous time process is an Eigenfunctions Stochastic Volatility
model (ESV) of Meddahi (2001). This class contains most of the popular SV models, in
particular the log-normal model of Hull and White (1987) and Wiggins (1987), the square-root
and affine models of Heston (1993) and Duffie, Pan and Singleton (2000) respectively, and the
GARCH diffusion model of Nelson (1990). In this setting, we derive explicitly the mean and
the variance of the noise and its correlation with the integrated volatility.

These theoretical results complement those of Barndorff-Nielsen and Shephard (2001b).
These authors provide two important theoretical results. In the first one, they give in a
general setting a Central Limit Theorem of the convergence of the realized volatility to the
integrated when the length of the intra-daily returns tends to zero. Thus, they provide the
speed of convergence and the asymptotic variance of the noise term. In the second result, they
characterize the mean and variance of the noise when the underlying instantaneous variance
process is a linear combination of independent positive Lévy processes of Barndorff-Nielsen and
Shephard (2001a).! In both cases, the authors ruled out the leverage effect while they assumed
a driftless model in the second case. Thus, our results are the extension of the second results
of Barndorff-Nielsen and Shephard (2001b) to the case where the underlying diffusion process
governing the volatility is general and where there is leverage effect and drift. Moreover, we
provide also the first order limit of the mean and variance of the noise term. Therefore, while
it is not a Central Limit Theorem, our results complement those of Barndorff-Nielsen and
Shephard (2001b). In particular, we show that this first order limit does not depend on the
leverage effect. This may suggest that the asymptotic result of Barndorff-Nielsen and Shephard
(2001b) holds also when there is leverage effect.

After deriving the theoretical formulae of the mean and variance of the noise and its corre-
lation with the integrated volatility, we quantify these values by taking explicit examples from
the literature. These examples are: i) the GARCH diffusion models without drift and leverage
effect used by Andersen and Bollerslev (1998) and Andreou and Ghysels (2001); ii) the affine
models with drift and leverage effect estimated by Andersen, Benzoni and Lund (2001) on

LAs advocated by these authors, their results hold also when the variance process is a marginalization of
a vector of factors, where this vector admits a Vector Autoregressive representation of order one, VAR(1).
Andersen (1994) firstly introduced such models in discrete time and called them the Square-Root Stochastic
Autoregressive Volatility (SR-SARV) models while Meddahi and Renault (1996, 2000) introduced them in
continuous time and showed their robustness against temporal and cross-sectional aggregations.



the S&P500; iii) the log-normal model with drift and leverage effect estimated by Andersen,
Benzoni and Lund (2001) on the S&P500.

The main findings of this empirical illustration are the following. First, the mean of the
noise is very small relatively to the mean of the integrated volatility when one uses intra-daily
observations. In particular, it is smaller (in absolute value) than .2%. Second, the standard
deviation of the noise is relatively important with respect to the mean and the standard
deviation of the integrated volatility. In particular, when one uses realized volatility based
on returns at five (resp thirty) minutes, the ratio of the standard deviation of the noise over
the mean of the integrated volatility is around 10% (resp 25%). At the same frequencies, the
ratio of the variance of the noise over the variance of the integrated volatility is around 5%
(resp 10%) and some times much more. These two ratios suggest that the noise is important
even when one considers five minutes returns. Third, under leverage effect, the autocorrelation
between the noise and the integrated volatility is very small. Besides, the results based on
square-root and log-normal models are almost the same. Finally, we found that by using the
first order asymptotic approximation, one gets results that are very close to ones obtained by
using exact formulae. This is very interesting because of the simplicity of the first order results
with respect to the exact ones.

We also suggest an approach to extract the information about the integrated volatility con-
tained in the returns through the leverage effect. It turns out that, in practice, this additional
information is negligible.

Finally, note that we also characterize the difference between the integrated and realized
co-volatilities. These co-volatilities are important in a multivariate setting. Studying the
properties of this difference is left for future research.

The paper is organized as follows. In Section 2, we characterize the noise in the univariate
and bivariate cases and discuss their qualitative properties. In Section 3, we recap the main
properties of the ESV models of Meddahi (2001a). In the fourth Section, we compute explicitly
the mean and variance of the noise and the correlation between the noise and the integrated
volatility. At each step, we give an empirical illustration of the importance of these terms. The

last section concludes while all the proofs are provided in the Appendix.

2 Preliminary Results

In this section, we characterize the difference between the realized and integrated volatilities
in a general framework. This will be useful in Section 3. We also characterize this difference

in the multivariate case.



2.1 Relationship between the integrated and realized volatilities

Consider S; a continuous time process representing the price of an asset or the exchange rate
between two currencies. Assume that it is characterized by the following stochastic differential
equation:

dlog(S;) = mydt + o dW,; (2.1)

where W, is a standard Brownian process. We assume that m; is general and may depend, for
instance, on o; and log(S;). The process oy is also general and we allow for leverage effect, i.e.,

if one assumes that o7 is characterized by
dO’t2 = ﬁ%tdt + 6’tth,

then we allow th to be correlated with dW;. We assume here (without loss of generality)
that the time ¢ corresponds to a day. Consider a real h such that 1/h is an integer and define

the realized volatility RV;(h) by
1/h

RVy(h) = Zﬁ@fﬂh (2.2)
im1

where r,@mh is the return over the period [t — 1+ (i — 1)h;t — 1 4 ih], i.e.

S, ..
7’7@1+ih = log (7t Sl > . (2.3)
Sto1+G-1)n

When h goes to zero, the realized volatility converges in L2. The limit is called the quadratic
variation or the integrated volatility in the financial literature. It is denoted by I'V; and defined
by?

IV, = /tt o2du. (2.4)

-1
Barndorff-Nielsen and Shephard (2001b) provide an asymptotic theory of the convergence of
the realized volatility to the integrated volatility. In particular, they show that given the
information o(oy,,t — 1 < u < t), we have

VEL(RV(h) = IV}) — N (0,2 [ odu). (2.5)

t—1

While RV;(h) converges to IV; when h — 400, the difference may be not negligible for a given

h. In order to study the difference, define ,uyi)l 4in and s§’”1 4in DY

W =" e and W= adW, 2.6
Hi—1+in :/t—1+(i—1)h Myt and  &; 7 44 :/t—1+(i—1)h TulWy. (2.6)

It is clear that

h h h
Tg—)l—i-ih = :ui(t—)l—i-ih + 815—)1+z'h' (2.7)

2If one incorporates jumps in (2.1), then the quadratic variation will be equal to the integrated volatility
plus an additional term due to the jumps.



Therefore,

h h h h h
(Tt(—)1+z'h)2 = (Mg—)1+m)2 + 2/‘%—)1+ih5§—)1+ih + (51(:—)1+ih)2'

Hence,

t—1+4ih t—1+ih
h h h h h
(Tt(—)1+z'h)2 = /t—l—l—(i—l)h Uzd“"‘ (/%E—)Hih)z + 2M§—)1+ih5§—)1+ih + <(57§—)1+ih)2 - /t—1+(z'—1)h UZdu) )

To understand the properties of the third term, it is useful to rewrite it in terms of a stochastic
integral. This is the purpose of the following Proposition, where we use Ito’s Lemma to

characterize the noise defined as the difference between the realized and integrated volatilities:

Proposition 2.1 Characterizing the noise. Let h be a positive real such that 1/h is an
integer, i an integer and consider the processes Sy, RVi(h), rgf)lﬂh, 1V, /%@Hih and eg@lﬂh
defined respectively in (2.1), (2.2), (2.3), (2.4), the left part of (2.6) and right part of (2.6).

Then:

N t—1+ih N
(Tt(—)1+ih)2 = /t—1+(z'—1)h o2du + ug_)1+ih, where (2.8)
() W N2 g ) g [T WV Vo dWV 59
Ui 1yin = (B—14in)” + 2M-14in€i14in T t71+(i71)h( b 14—1)h osdWs) oy dW,. (2.9)
Hence,

RVi(h) = IV, 4+ uy(h) (2.10)

where "

h

ui(h) = 3 u (2.11)

i=1

From this proposition, we can make some general remarks about the characteristics of u§E)1 +ih
and, hence, u;(h). The first term in the right part of (2.9) implies that when the drift m,, is not
zero, the mean of u{") i, and u;(h) are in general nonzero. The drift m,, is obviously nonzero
in the stocks cases. This is also the case for exchange rates when one considers intra-daily data.
For example, Andersen and Bollerslev (1997) showed that intra-daily returns of exchange rates
rt(ﬁ)l 1, are correlated when one considers five minutes sample data. This nonzero mean is due
to microstructure effects. This lead, for instance, Bai, Russel and Tiao (2001) to study the
microstructure effects on measuring the integrated volatility by the realized volatility.

Note that this nonzero mean of w;(h) is not in contradiction with the asymptotic result

(2.5) of Barndorff-Nielsen and Shephard (2001b). This asymptotic result implies that

Elu(h)]
Vh
()

Consider now the third term in the right part of (2.9). It implies that u{" v, and u,(h)

limh_>0 =0.

are in general heteroskedastic. This is problematic since the difference between the integrated

and realized volatilities will have a higher variance when the instantaneous variance o7 and
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integrated volatility I'V; are high. Note that this heteroskedasticity is not a surprising result
since it is implicit in (2.5).

This third term implies also that under leverage effect, ug’i)l 4in, and u¢(h) are in general
correlated with the integrated volatility IV;. Note as well that under leverage effect, if the
drift m,, depends on the volatility, the mean of the second term in (2.9) is nonzero.

Most of the previous remarks are well known. For instance, Barndorff-Nielsen and Shephard
(2001b) pointed out that the mean of the noise is nonzero and that the noise is heteroskedastic.
However, the impact of the leverage effect is not considered in the literature. We will consider
explicit examples in the fourth section to quantify the characteristics of u;(h).

Finally it is important to observe that we consider a different approach than Barndorff-
Nielsen and Shephard (2001a-b) to study the finite sample properties of u;(h). Their proofs are
done given the sample path of the volatility. However, they exclude leverage effects. Moreover,
they assume that the drift is an affine function of the variance. Our proofs are based on Ito
calculus in order to take into account the leverage effect, in particular if it is time-varying, and

general drifts.

2.2 Relationship between the integrated and realized covolatilities

We consider now the multivariate case. Without loss of generality, we consider the bivariate

case only. As in the previous section, assume that two processes s1; and Sy; are given by
leg(Sjt) = mjtdt + O-jtdeta ] = 1, 2, (212)

where Wy; and Wy, are two standard Brownian processes that may be correlated. This correla-
tion, denoted p;, may be constant or time-varying (for instance if it depends on the volatilities
o1t and oy). Define the realized covolatility RV; 24(h) by

1/h
_ h h
RCoVi54(h) = Z Tg,t)—1+ihré,t)—l+ih (2.13)
i=1
where T§-ﬁl1+ih for 7 = 1,2, is defined by

h Sjt—1+ih .

T sy = log (75 Bl ) j=12 (2.14)
Jt—14+(i—1)h

When h goes to zero, the realized covolatility converges in L2, The limit, denoted ICoV; o4, is

called the quadratic covariation or integrated covolatility and is defined by

t
I1CoVio4 E/ Pu O1,u02,,dU. (2.15)
t—1

We will now characterize the difference between the realized and integrated covolatilities. For

this purpose we also define, for j =1, 2, ,ug?_lﬂh and agflt)_lﬂh by
) t—1+ih ) t—1+ih .
Hjio1vin = 1 mjudu and €5/ 4, = 1 TjudWin, 7 =1,2. (2.16)



Proposition 2.2 Characterization of the noise between the co-volatilities. Let h be
a positive real such that 1/h is an integer, i an integer and for j = 1,2, consider the processes
Sjt, RCoVi2.4(h), 7“](',’?—1+m: ICoV;, Mﬁ)—lnh and E§Z)_1+Z-h defined respectively in (2.12), (2.13),
(2.14), (2.15), the left part of (2.16) and right part of (2.16). Then:

t—1+ih
h h h
Tg,t)—lﬂ'hré,t)—l—kih = /t—1+(z'—1)h Pu O1u02udu + ug,2),t—1+z'h (2.17)

where

(h) _ () (h) (h) (h) (h) (h)
UL 9t 14ih = M1t 14inM2 i 14in T M1 4 14in€2,t—14ih T M2t 14in€1 1—1+ih

t—1+ih u t—1+ih u
+/ (/ U2,de2,s)01,udW1,u + (/ al,deI,s)UQ,udW2,u-
t—14+(G—1)h Jt—1+(G-1)h t—14+(i—1)h Jt—1+(i—=1)h
(2.18)
Hence,
RCOVl,Q,t(h) = ICOVLQ,t -+ Ul,g,t(h) (219)
where
1/h X
(b)) = Yl 1 (2.20)
i=1

As in the univariate case, if both drifts are nonzero, then the mean of u;5.(h) is nonzero.
Moreover, u;2.(h) is heteroskedastic. Finally, observe that these results hold even if the
integrated covolatility IC'oV; is zero, which holds when p, = 0. Little has been done in the
literature about the realized covolatility; see however ABDL (2001b). We will not study more

the covolatilities and leave this for future research.

3 Eigenfunction Stochastic Volatility Models

In this section, we recap the main important properties of the Eigenfunction Stochastic Volatil-
ity (ESV) models introduced in Meddahi (2001a).

3.1 The General Theory

Consider a univariate Markov stationary process f; characterized by

df, = u(f,) + o(f)dw? (3.1)

where Wt@) is a standard Brownian process. Let A be the infinitesimal generator operator

associated to f; (see, e.g., Hansen and Scheinkman, 1995):

02(ft)
2

AB(fe) = p(f)d' (f) + ¢ (f:) (3.2)



where ¢(f;) is a square-integrable function and twice differentiable. A function ¢ is called an

eigenfunction of the infinitesimal generator A with a corresponding eigenvalue —¢ if

A</5(ft) = _5¢(ft)- (3-3)

For a review on operator methods for continuous time Markov models, see Ait-Sahalia, Hansen
and Scheinkman (2001). An obvious eigenvalue is zero associated to any nonzero constant.
When {f;} is time-reversible, i.e. the conditional distributions of f; given f; ; and of f; given
fi41 are the same,? the eigenvalues are reals. Hansen, Scheinkman and Touzi (1998) show that
under appropriate boundary protocol, stationary scalar diffusions are time-reversible. So we
make the time-reversibility assumption:

Assumption A1l. The stationary process {f;} is time reversible.

The set of eigenvalues is called the spectrum of the operator A. In the following, we assume:
Assumption A2. The spectrum of the infinitesimal generator operator A of {f;} is discrete
and denoted {—d;,7 € N} with 0o =0 and d§y < 07 < 09 < ... < §; < d;11...; the corresponding
eigenfunctions are denoted E;(f;), i € N.

This assumption is true for most of the important examples considered by the literature,
excluding the GARCH diffusion model that we will consider at the end of this section. A
sufficient assumption is that the operator A is compact; see Hansen, Scheinkman and Touzi
(1998) and Ait-Sahalia, Hansen and Scheinkman (2001) for more details.

The eigenfunctions have some interesting properties. In particular:

i) two eigenfunctions F;(f;) and Ej;(f;) associated to two different eigenvalues are orthogonal:
E[E(f)E;(f)] = 0; (3.4)
ii) as a consequence, any nonconstant eigenfunction is centered:
E[E;(f)] = 0; (3.5)
iii) any eigenfunction is an autoregressive process of order one, in general heteroscedastic:
Vh >0, E[Ei(fern) | fr,7 < 1] = exp(=6;h) E;i(f1); (3.6)

iv) any square-integrable function g, i.e. F[g(f;)?] < oo, may be written as a linear combination

of the eigenfunctions, i.e.

9(fi) = 2aiEi(ft) where a; = E[g(f:)Ei(f:)] and ia? = E[g(f:)?] < oo. (3.7)

Therefore, g(f;) is the limit in mean-square of >-*_; a; F;(f;) when p goes to +oo.

3Recall that f; is assumed to be Markovian. Therefore, the conditional distribution of f; given f; | (resp
fe+1) is also the conditional distribution of f; given {f;,7 <t —1} (resp {fr,7 >t +1}).



Meddahi (2001a) defines a a continuous time process {log(S;)} as an ESV model of order
p, ESV(p), with {f;} the underlying diffusion process if:

dlog(S,) = mydt + oy [\/1 — p2dW) + pdW ], with (3.8)
p P

o; =Y a;Ei(f;), where Y a] <o (3.9)
=0 1=0

and Wt(l) and Wt@) are two independent standard Brownian processes.

The ESV class contains as special cases all the popular SV models, including the square-
root model of Heston (1993), the affine one of Duffie, Pan and Singleton (2000), the log-normal
model of Hull and White (1987) and Wiggins (1987) and the GARCH diffusion model of Nelson
(1990). The main reason of this result is due to (3.7). Most volatilty models define the variance
process as a function of a particular state-variable f;. It turns out that this function is always
square-integrable. Therefore, this function may be expanded onto the eigenfunctions associated

to the state variable. In the following section, we consider these examples in detail.

3.2 Examples

3.2.1 The square-root case

A popular SV model in the continuous time literature is the Heston (1993) model where the

variance process o7 is square-root, i.e.
do? = k(6 — 02)dt + noydW>, k> 0.

Define the real o and the process f; by

2k0 2k 4
o = F_lj ft: FO}. (310)
Then, by Ito’s Lemma, we have
dfs = k(a+1— f;) + V2k\/ fdW,?. (3.11)

a
i

It turns out that the diffusion (3.11) admits as eigenfunctions the Laguerre polynomials L )( ft)

associated to the eigenvalues §; = ki. The Laguerre polynomials Lga) are characterized by

)+ 1/2 14 1/2 . 1o
( 2 Z o ) ZLEQ)(x) — ( ? i1 « ) (_.'L'+22+O£—1)ng)1($)—< 1 ) o ) (Z+a-1)Lz(a)2(x),
1

Thus, the variance process o7 is a linear combination of the constant and the first eigenfunction:

6 o
o =0- ﬁLg (1), or

9
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NIt

It is easy to show that the affine model of Duffie, Pan and Singleton (2000) has also a variance

ol = aOL(()a)(ft) + anga)(ft) where ay =6 and a; = — (3.13)

process which is a linear function of the state variable (see Meddahi, 2001a).

3.2.2 The log-normal example

Another popular SV model is the log-normal model of Hull and White (1987) and Wiggins
(1987) where o, is defined by

dlog(c?) = k[ — log(c2)]dt + odW,>. (3.14)

Define the state variable f; by
fi = @(logaf —0). (3.15)

By using Ito’s Lemma, we get
df, = —k fydt + V2k dW®. (3.16)

The eigenfunction associated to the Ornstein-Uhlenbeck process (3.16) are the Hermite poly-

nomials H; associated to the eigenvalues §; = ki and characterized by

1

Hy(z) =1, Hi(z) =z and Vi > 1, H;(x) 7

{.IHi_l(l') — \/i — 1HZ_2(.T)} (317)
Meddahi (2001a) shows that

ol = iaiﬂi(ft), where a; = exp(f + %)L\/\/Z_Q‘Tﬁ)z (3.18)
i=0 '

3.2.3 The GARCH diffusion example

The third popular SV model is the GARCH diffusion one considered by Nelson (1990):
do? = k(6 — 02)dt + oo?dW, . (3.19)

This process was first introduced by Wong (1964). The polynomial solutions of

o’z?

k(0 —x)¢'(z) + 5

¢"(z) = —6¢(z)

are known as the Bessel polynomials. However, there exists an integer iy such that for all
1 > 1, the Bessel polynomials are not square-integrable with respect to the stationary marginal
density of o?. As a consequence, the Bessel polynomials of order higher than 4y are not in the
domain of the infinitesimal generator and, hence, are not eigenfunctions. Fortunately, Wong

(1964) derives the eigenfunctions of the diffusion infinitesimal generator by using results on

10



Sturm-Liouville equations. In particular, he shows that the spectrum is mixed or continuous
and that the eigenfunctions are hypergeometric functions.

In the general theory of ESV models, we exclude such example since we assume that the
spectrum is discrete. However, we can easily incorporate this example (see Meddahi, 2001a).
The main difference is in the expansion result (3.7). When the spectrum is continuous, one
has to consider an integral instead of a sum. We will not consider such expansion in this
paper. However, we will assume that the variance is a GARCH diffusion model and that
the second moment of the variance o? is finite. This means that the first eigenfunction is an
affine function and that the variance depends only on this eigenfunction and the constant.
Observe that Andersen and Bollerslev (1998) and Andreou and Ghysels (2001) who consider
this example also assume the existence of the second moment of o7, in order to use the weak
GARCH results of Drost and Werker (1996).

By using Wong (1964) results, we know that the stationary density of o7 is given by*

_ (0%/2k0) @k [—(2k/02)—2] 2K0 _,
flz) = T(@k/o?) 7 1) exp( 2 ) (3.20)
where I'(.) is the Gamma function defined by
+oo
['(a) :/ u™ "' exp(—u)du. (3.21)
0

A moment of order 7 of o7 exists if and only if r+ [—(2k/0?) —2] < —1. Consider an alternative
parameterization considered by Andersen and Bollerslev (1998) and Andreou and Ghysels
(2001):

o=V2kA with \>0.

Then a moment of order r exists if and only if r < 1 + i In their Monte Carlo simulations,
Andersen and Bollerslev (1998) and Andreou and Ghysels (2001) consider A = .296 and A =
.480. Thus, they assume the following bounds for moments order: 4.378 and 3.084 respectively.
Moreover, the second moment of o7 exists if and only if A < 1. While it is well known that the
mean of o7 is 6, it is easy to show by using the marginal distribution of o7 that its variance is

Varlo?] = (6?°X)/(1 — X). Therefore, the first orthonormal eigenfunction is given by

Ei(0}) = (o7 —0). (3.22)

Moreover,
VA
=Dy

o7 = agEy(07) + a1 E1(0}) where ag =60 and a; = (3.23)

4For a stationary scalar diffusion process z; solution of dz; = u(z;)dt + o(x;)dW;, the stationary density

_ , : 5 * p(u)
function of z; is, up to a scale, given by o(z)™* exp( /

= % (u)

)du. The scale parameter is chosen such that the

density integral is equal to one.
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3.3 The multifactor case

Meddahi (2001a) considers also the case where the variance is a function of several factors.
Without loss of generality, we consider the two factors case. Let f;; and f5; be two independent

stochastic processes characterized by

where the eigenfunctions (resp eigenvalues) of the corresponding infinitesimal generator are

denoted E;(f1:) and Es;(f2:) (vesp 61; and d,;). Then, the variance process o7 is defined by

of = Y. ai;jE;i(fi1)Es;(f2y) where ) af; < oo.

0<i,j<p 0<i,j<p

It turns out that the four properties of the eigenfunctions defined in (3.4), (3.5), (3.6) and (3.7)
also hold for the functions E; ;(f;) defined by

E;;(fi) = Evi(fi4)E2;(fay) where fi = (fie, for)'- (3.25)

In other words, E; ;( f;) are the eigenfunctions associated to the bivariate state variable (f1 ¢, fa.).
Note that all the results that we will show later hold also when one considers a multifactor

model without leverage effect.

4 Characteristics of the noise

In this section, we quantify the importance of the noise term. We start by computing its mean
and variance. At each step, we illustrate this importance by considering examples from the

literature.

4.1 Mean of the noise

We assume that the processes log(S;), o, and f; are defined by (3.8), (3.9) and (3.1). Besides,

the drift m, is assumed to be

P P
=0 1=0

Observe that the condition (4.1) implies that >?_, b2 < +oo. Thus, we include any example

where the drift is assumed to be a square-integrable function of f;. In particular, if the drift is

assumed to be an affine function of the variance, i.e.

m, = c+ do2, (4.2)

5See Chen, Hansen and Scheinkman (2000) for a general approach of eigenfunctions modeling in the multi-
variate case.
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then the coefficients b; are given by
by = c+day, b; =da;, 1> 1. (4.3)

In the following Proposition, we use, for a give i, the reals {e;;} and p; defined in the (L?)

expansion of oo (f;)El(f;) onto the eigenfunctions, i.e.
Pi
o0 (f)Ei(fi) =Y e Ei(fo), (4.4)
=0

where EJ(.) is the first derivative of E;(.). Thus, we assume that oio(f:)E;(f:) is square-
integrable. For more details, see Meddahi (2001b).

Proposition 4.1 Mean of the noise. Let h be a positive real such that 1/h is an integer,

and consider the processes log(Sy), 0w, fi, my, RVi(h), IV; and ui(h) defined respectively in
(8.8), (3.9), (3.1), (4.1), (2.2), (2.4) and (2.10). Then:

Eluy(h)] = hb? + % (fj bi(bi—g—zpei’o)[exp(—éih) 1+ 51-/1]) . (4.5)

i=1 i
As a consequence, when h — 0, we get
p
Eluy(R)] ~ h[bg + > bi(bi + peio)]. (4.6)

=1

As pointed out in Section 2, the mean of u;(h) in nonzero when the drift is nonzero. Besides,
(4.5) involves the leverage effect parameter p. This is due to the mean of the second term in
(2.9) which is nonzero. The equation (4.6) gives additional information than the asymptotic
result (2.5) of Barndorff-Nielsen and Shephard (2001b); (4.6) means that when A — 0:

Efuy(h)]
Vh

To assess the importance of this mean, we consider the empirical results of Andersen,

p
~ VA + > bi(bi + peio))-
i=1

Benzoni and Lund (2001). These authors estimated several models on daily returns of the
S&P500.% In particular they estimated the square-root and log-normal models without and
with leverage effect. They consider an affine drift as in (4.3). They rejected all these models.
However we consider their empirical results in order to get a first order approximation of the
importance of (4.5) and (4.6) since their estimated models are the best ones in these popular
SV classes.” Note also that models without leverage effect were strongly rejected by these

authors.

6The sample period is 01/02/1953-12/31/1996.
"Models including jumps in (3.8) that we exclude in our study were not rejected by Andersen, Benzoni and
Lund (2001). Note however that ESV models of Meddahi (2001a) can have jumps.
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To measure the importance of the mean of the noise, we consider the following criterion:

Eluy(h)]

0=1 )
Ratio 00 BTV

(4.7)

In other words, we present the ratio, in percentage, of the mean of the noise term over the
mean of the integrated volatility. The results are provided in Table 1. We give the value of
the ratio defined in (4.7) by using both the exact formula (4.5) and the asymptotic one (4.6).

Table 1
Model Affine Log-normal
1/h freq | Ratio-Ex Ratio-Asym | Ratio-Ex  Ratio-Asym
1 day .168 .168 179 179
24 1 hour | .00701 .00701 .00747 .00745
48 30 mn .00351 .00351 .00373 .00373
96 15 mn .00175 .00175 .00187 .00186
144 10 mn .00117 .00117 .00124 .00124
288 5 mn .000584 .000584 .000622 .000621

From Table 1,8 it is clear that the results based on both exact and asymptotic formulae are
the same. Moreover, the mean of the noise is almost the same in both affine and log-normal
models. Finally and more importantly, the mean of the noise is relatively negligible with

intra-daily data, for instance when one uses returns based on hourly data or higher frequency.’

4.2 Variance of the noise

In the sequel, we will assume that the drift is constant, i.e.

Proposition 4.2 Variance of the noise term. Let h be a positive real such that 1/h is an
integer, and consider the processes 1og(Sy), oy, fi, ms, RVi(h), IV, and us(h) defined respectively
in (3.8), (3.9), (8.1), (4.1), (2.2), (2.4) and (2.10). Assume that the drift m,, is given by (4.8).
Then:

P42
Var[utﬂh] = dapbih® + 8b0hpz 9i%, Ulexp(—0;h) — 1+ &;h] + 42 %[exp(—&h) — 1+ 4;h)

2
115

€0 1 —exp(—d;h) 1—exp(—d;h) 1—exp(—d;h)
2 : E : 01 — 4.
e [ ] l5z‘ & 56 -0) 60— 5y) (49

where e; ; and p; are defined in (4.4) and under the convention

1 —exp(=d;h) 1 —exp(=dih) _ exp(=dih)(1+dih)
6; (0 — 9;) 0i(d; = 6;) &

when (Sz = (Sj.

8The results of the log-normal model are based on the expansion (4.5) by taking the first 100 terms.
9As we mentioned in the introduction, we do not consider impact the of microstructure effects.
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, h
Moreover, the random variables ug +)Z-h are uncorrelated. Hence,

h
_ Varluf%,]

Var[ug(h)] -

(4.10)

Finally, when h — 0, we have:
P
Varfuy(h)] ~ h2 Y a. (4.11)
i=0

Observe that if there is neither drift nor leverage effect, Var[u:(h)] becomes

1 (agh?* K a?
Varlus(h)] = 5 ( 02 +>° 5—;[exp(—(5ih) -1+ (5Z~h]> :
=1 1

This formula is exactly the same one that Barndorff-Nielsen and Shephard (2001b) derive.
However, these authors assume that the variance process is a linear combination of p indepen-
dent factors. Thus, one needs only orthogonality between the factors (as for the eigenfunctions)
to get this formula.

The asymptotic result (4.11) implies that limy,_,0Var[u,(h)] = 0, i.e. the realized volatility
tends to the integrated volatility in mean-square!® and, hence, in probability. This is the well
known result mentioned in Section 2. Moreover, if one considers the asymptotic result equation
(2.5), it is easy to show that

t
E[| oldu]

)4
t—1 i—0

a:. (4.12)

Therefore, we show here that the asymptotic variance of the noise u(h), i.e. Var[v/h=Tuy(h)],
does not depend on the leverage effect. This suggests that the asymptotic result of Barndorft-
Nielsen and Shephard (2001b) holds also when there is leverage effect, at least unconditionally.

In order to quantify the importance of the variance of the noise for a given frequency, we
consider several examples. We start by considering models without drift and leverage effect.
The first examples are the square-root models estimated by Bollerslev and Zhou (2001) on
daily exchange rate data by using the realized volatilities.!! They estimated a model with one
factor and another with two factors. They rejected only the first one. The second examples we
consider are the GARCH diffusions models by Andersen and Bollerslev (1998) and Andreou
and Ghysels (2001). After that, we consider two other examples with leverage effect where
the drift is constant. The first examples we consider are the same models than the previous
subsection, that is the square-root and log-normal models estimated by Andersen, Benzoni and
Lund (2001).12

10Recall that the mean of the noise tends to zero when h does.

1 Galbraith and Zinde-Walsh (2001) and Maheu and McCurdy (2001) consider also estimation of GARCH
models by using realized volatilities.

12Notice that we do not take into account the affine term in the drift, that is we assume that the drift is
constant. Before estimating their models, Andersen, Benzoni and Lund (2001) filtered the data in order to
remove the dependence in the returns.
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We use two criteria in order to measure the importance of the variance of the noise:

Var{ug(h
Ratiol =100 ﬂ and Ratio2 = 100 Varlu(h)]

E[I7] Varlvy

The first criterion is clearly related to the length of the confidence interval of the integrated
volatility. The second criterion is appealing because of the randomness of the integrated
volatility. Typically, when the noise is uncorrelated with the integrated volatility,'? the variance
of the realized volatility is the sum of the variances of the noise and the integrated volatility.
This ratio is crucial when one considers filtering the integrated volatility from the realized

volatilities.

Table 2-a Affine without leverage

1 Fac. 2 Fac. 1 Fac. 2 Fac. | 1 Fac. 2 Fac.
1/h  freq | Std-Ex Std-As | Std-Ex Std-As | Ratiol Ratiol | Ratio2 Ratio2
1 day 1.29 1.31 749 .753 249 149 295 2137

24 1 hour | .267 .268 154 154 51.7 30.5 12.7 89.9

48 30 mn | .189 189 .109 109 36.6 21.5 6.34 45.0

96 15mn | .134 134 0768  .0768 25.9 15.2 3.17 22.5
144 10 mn | .109 .109 0627 .0627 21.1 12.4 2.12 15.0
288 S5 mn | .0773  .0773 | .0444  .0444 14.9 8.80 1.06 7.50

In Table 2-a, we report the results based on the models estimated by Bollerslev and Zhou
(2001). The first interesting result is that computing the standard deviation of the noise
by using the exact formula or by using the asymptotic first order approximation is almost
the same when one uses intra-daily data. Besides, the standard deviation of the noise is
almost divided by two when one goes from the one factor model to the two factors one.
Therefore, since the unconditional mean of the integrated volatility is almost the same for
both models (.517 and .504 respectively), the first criterion is also divided by two when one
goes from the one factor model to the two factors model. Consider the two factors model that
was not rejected by Bollerslev and Zhou (2001). The first criterion is 8.8% and 21.5% when
one considers realized volatilities computed with five and thirty minutes returns respectively.
This is clearly not negligible since it means that the length of the confidence interval of the
integrated volatility is relatively large with respect to the integrated volatility. Of course, in
this criterion we clearly did not take into account the dependence between the conditional
standard deviation of the noise and the integrated volatility. Therefore, one has to be cautious
with our results. However, by using the asymptotic theory developed in Barndorff-Nielsen
and Shephard (2001b), Barndorff-Nielsen and Shephard (2001c) estimated empirically at each
day the confidence interval of the integrated volatility and showed that its length is large and
positively correlated with the integrated volatility.

13This holds when there is neither drift nor leverage effect; see the next subsection.
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Consider now the second criterion. For the two factors model, this criterion is 7.5% and
45% when one considers realized volatilities computed with five and thirty minutes returns
respectively. Again, this is not negligible, especially when one uses thirty minutes returns, and
suggests that one has to filter the integrated volatility by using all the history of the realized
volatility. Notice that for the one factor model, this criterion is relatively small. The main
reason is that in this case, the integrated volatility is more volatile than for the two factors
model (the standard deviations are .751 and .162 respectively). Finally, as we will see in
the following examples, the second criterion is not so bad, in particular when one uses thirty
minutes returns. The main reason is that in their inference procedure, Bollerslev and Zhou
(2001) did not take into account the difference between the integrated and realized volatilities.
More precisely, they derived theoretical moment conditions for the integrated volatilities while
they used the realized volatilities in the estimation procedure. By doing this, these authors
incorporated the noise term in the variance process. Therefore, they obtained a high variance
of the variance which is crucial when one uses realized volatility instead of integrated volatility.

In particular, the variance of the variance clearly appears in (4.12) and (2.5).

Table 2-b GARCH

Model DM-US$ Yen-US$ DM Yen DM Yen
1/h freq Std-Ex  Std-Asym | Std-Ex Std-Asym | Ratiol Ratiol | Ratio2 Ratio2
1 day 1.07 1.07 930 934 168. 195. 681 421
24 1 hour 219 219 191 191 34.4 40.0 28.5 17.7
48 30 mn .155 .155 135 135 24.3 28.3 14.2 8.84
96 15 mn .109 .109 .0953 .0953 17.2 20.0 7.12 4.42
144 10 mn | .0893 .0893 0778 0778 14.0 16.3 4.75 2.95
288 5 mn .0632 .0632 .0550 .0550 9.93 11.6 2.37 1.47

Consider now the two GARCH diffusions models considered by Andersen and Bollerslev
(1998) and Andreou and Ghysels (2001). They correspond to daily returns of DM-US$ and
Yen-US$. The results are presented in Table 2-b.}* Note again the small difference between
using exact and first order approximations formulae for the standard deviation of the noise.
Moreover, the results are almost the same for both DM-US$ and Yen-US$ returns. Thus, we
consider only the results on DM-US$. The first criterion is still not negligible (around 10% with
five minutes returns). Thus, the length of the confidence intervals will be relatively important.
However, the second criterion is negligible at five minutes (2.37%) but not at thirty minutes
(14.2%). This means that filtering the integrated volatility when one uses realized volatility
computed with thirty (resp five) minutes returns will have a large (resp small) impact on the

quality of the measure of the integrated volatility.

MNote that the variance of the noise corresponds to the MSE computed by simulation in Andersen and
Bollerslev (1998). The exact results are very close to their ones.
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Table 2-c Leverage

Model Affine Log-normal | Affine Log-normal

1/h freq | Std-Ex Std-Asym | Std-Asym | Ratiol Ratio2 Ratiol Ratio2
1 day 2.16 .892 993 402.9 4176 180.2 523.8
24 1 hour | .200 182 203 37.3 35.8 36.8 21.8
48 30 mn | .135 129 143 25.3 16.4 26.0 10.9
96 15 mn | .0933 .0910 101 174 7.83 18.4 5.46

144 10 mn | .0756 .0743 0827 14.1 5.13 15.0 3.64

288 5mn | .0530 .0526 .0585 9.91 2.53 10.6 1.82

Consider now the results on the affine and log-normal models with leverage effect estimated
by Andersen, Benzoni and Lund (2001). The results are reported in Table 2-c. Consider the
affine case. Again, the difference between the exact and asymptotic results is very small when
one uses intra-daily observations. The first criterion is still not negligible (around 10% with
five minutes returns) while the second one is at five minutes (around 2.5%) but not at thirty
minutes (around 15%). Thus, filtering the integrated volatility when one uses realized volatility
computed with thirty (resp five) minutes returns will have a large (resp small) impact on the
quality of the measure of the integrated volatility. The same results hold for the log-normal

model. Note that for this case, we use the asymptotic results.!®

4.3 Covariance between the noise and the integrated volatility

Given that the variable of interest I'V; is observed with errors, it is of interest to characterize
the covariance between I'V; and the noise term. This is important for estimation, filtering and

forecasting purposes. This covariance is characterized in the following proposition:

Proposition 4.3 Covariance between the noise and the integrated volatility Let h
be a positive real such that 1/h is an integer, and consider the processes log(Sy), oy, fi, My,
RVi(h), IV; and ui(h) defined respectively in (3.8), (3.9), (3.1), (4.1), (2.2), (2.4) and (2.10).
Assume that the drift m, is given by (4.8). Then:

(h) t—1+ih 9 p a'iei,O
Cov(u,, /t o Oo) = 2l 3 G exp(~0) — 1+ ik
1-— —0;
L 1o M)” . (4.14)

P i ejo|h  1—exp(=6;h) 1—exp(=9d;h)
+20° Y a4 €2 l— - - ]
1:21 L; 1oy [ o7 d;(6; — &)

Besides,

0;(6; — ;)

Covfun(h), IV;) = 1 Cov(ufy, [ " %) (415)
ov(u = —Cov(u,,’ o-du). .

t I t h t+ihs t—1—|—(’t—1)h U
Finally, when h — 0, the correlation between the noise uy(h) and the integrated volatility IV,
18

Corr(ug(h), IV;) = O(h%?). (4.16)

15We need to compute the coefficients e; ; that appear (4.4). The exact results will be included in the next
version of the paper.
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This proposition implies that when there is no leverage effect, we have
Cov(u(h),IV;) = 0.

Moreover, (4.16) implies that the correlation between the noise and the integrated volatility

tends to zero very fastly when one increases the frequency of intra-daily observations.

Table 3 Correlation
1/h  freq | Correlation

1 day -0.0005
24 1 hour | -9.400e-06
48 30 mn | -3.472e-06
96 15 mn | -1.257e-06
144 10 mn | -6.904e-07

2880 H mn | -2.440e-07

In order to assess the importance of this correlation, we consider models with leverage
effect. In Table 3, we report this correlation for the affine model estimated by Andersen,
Benzoni and Lund (2001).1% These results clearly mean that the correlation between the noise
and the integrated volatility is very small, for instance .0056 when one considers returns at

thirty minutes. Hence, one can ignore this correlation.

4.4 Combining the realized volatility with the constant

We show previously that the realized volatility RV;(h) is a noisy version of the integrated
volatility I'V;, i.e.
RVy(h) = 1V; + uy(h).

However, we are interested in the integrated volatility I'V;. Therefore, the best proxy of the
integrated volatility is not the realized volatility but a combination of the latter with the
constant. In other words, we have to consider the best linear predictor of I'V; given RV;(h)

and the constant. This comes from the following linear regression
IV; = a(h) + b(h)RVy(R) + n,(h). (4.17)

It is obvious that

 CovlIVi, RVi(H))
") = TRV, ()

. a(h) = E[IV)] - b(h)E[RVi(h)] (4.18)

and that the R2 of the regression (4.17) is given by

Ro(h) = —CoVIVe, BVi(R))”

- Var[IVi]Var[RVy(h)]’ (4.19)

16The results of the Log-normal model will be included in the next version of the paper.
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Observe that when IV, and wu,(h) are not correlated, we have:

1 Var[yy(h)]
b(h) = T Varlu W]/ Var Vi) R2(h) = b(h) and Varlu(h)] — R2(h). (4.20)
Table 4
Model Affine 2 Fac. GARCH DM-US$ | Affine with leverage
1/h freq | b(h),R2(h),Ratio | b(h),R2(h),Ratio | b(h) R2(h) Ratio
1 day .0447 128 0233  .0232 .0234
24 1 hour D27 778 736 .736 736
48 30 mn .690 .875 .859 .859 .859
96 15 mn .816 .934 927 927 927
144 10 mn .870 .955 951 951 951
288 5 mn .930 977 975 975 975

We report in Table 4 the different values of b(h), R2(h) and the ratio Var[i;(h)]/Var[u.(h)].
Note that Var[yy(h)] is the MSE of the regression (4.17) while Var[u;(h)] is the MSE that we
considered previously section, that is when one considers the realized volatility as a measure
for the integrated volatility.

We report the result of the affine model with two factors, the GARCH diffusion for the
DM-USS$ and the affine model with leverage effect. The results of the other models are similar.
Note that for models without leverage effect, we report only one column for b(h), R2(h) and the
ratio Var[y:(h)]/Var[ui(h)] since they are the same (see (4.20)). From Table 4, it is clear that
it is better to combine the constant and the realized volatility when one considers intra-daily
returns at fifteen minutes or more. The Ratio of the MSEs suggests that this improvement is
important even if one considers five minutes returns.

However, one has to be careful with this criterion when both measures are very good. The
reason is the following. Consider three random variables y, z; and zo. Let m; (resp ms) be
the best linear regression of y given z; (resp x2), R2; and MSE; (resp R2; and MSE,) the
corresponding R2 and MSE. Then, it is easy to show that

MSE, 1-R2
MSE, 1—R2,

Thus, the ratio of the MSEs may be high (or small) when R2; and R2, are close to one, that
is the explanatory variables x; and x, explain well the variable y. For instance, if R; = .98
and R2, = .99, then the ratio of the MSEs is two. This is exactly what happens in Table 4

when A is very small.

4.5 Extracting the information implied by the leverage effect

Assume now that there is leverage effect. This implies that the daily return r, defined by

re = log(S;/S;-1) (4.21)
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is correlated with the integrated volatility IV;. Therefore, a natural question is: How can we
extract the information about the integrated volatility contained in the daily return through
the leverage effect?

A simple appraoch Hence, a simple is to add this return r; in the regression (4.17), i.e. by

considering the regression
1V, = ay(h) + by (R)RVi(h) + c1(h)ry + i (h). (4.22)

Again, we have the following relationships

[0 ] = (var | B ]) [ ot T ], s

The theoretical formulae of b;(h) and ¢;(h) are provided in the Appendix B. We give in Table
5 the different values of b(h), by (h) and ¢;(h) for the affine model with leverage effect estimated
by Andersen, Benzoni and Lund (2001). These results mean that the contribution of the daily
return r; to explain the integrated volatility is very small when one uses realized volatility
computed with intra-daily data. This is not very surprising since the convergence of the
realized volatility to the integrated volatility when the length of intra-daily returns tends to

zero. However it is surprising for the daily frequency case.

Table 5

h freq b(h) | bi(h) c1(h)

1 day 0233 | .0232 -.0205
24 1 hour | .736 | .736 -.00501
48 30 mn | .859 | .859  -.00265
96 15 mn | 927 | .927 -.00135
144 10 mn | .951 951  -.000908
288 5 mn 975 | 975 -.000457

5 Conclusion

In this paper, we characterize the noise defined as the difference between the realized and
integrated volatilities for a given frequency of observations. Then, we provide qualitative and
quantitative results about the characteristics of this difference termed the noise term. The
main findings are threefold. First, under leverage effect or time varying drift, the mean of the
noise is nonzero but negligible compared to the mean of the integrated volatility. Second, the
noise is heteroskedastic and its standard deviation is not negligible with respect to the mean
and the standard deviation of the integrated volatility even if one considers returns at five
minutes. Third, under leverage effect, the correlation of the noise with the integrated volatility
is nonzero but very small when one considers intra-daily data.

We also show that combining the realized volatility with the constant or some other variables

reduces the noise. In particular, it is better to consider the linear regression of the integrated
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volatility on the constant and the realized volatility. Moreover, under leverage effect, we can
add the daily return to extract the information that it contains about the integrated volatility
through the leverage effect. It turns out that the improvement is small.

Our work can be extended in different directions. The first one is to take into account in our
analysis the parameter uncertainty, since in practice these parameters have to be estimated.
Moreover, we ignore microstructures effects. A simple approach for incorporating them is by
assuming that one of the factors is a continuous time Markov chain. It turns out that such
processes also admit an eigenfunctions decomposition.

Two other major extensions are currently considered. The first one is to incorporate jumps
in the stock or its volatility. Assuming the characteristics of the jumps, i.e. their intensity and
sizes, are functions of the same state variable we consider will be very useful. This is exactly
what happens in the affine models with jumps of Duffie, Pan and Singleton (2000). The
second extension is related to the quadratic power variations considered by Barndorff-Nielsen
and Shephard (2001d). As advocated by these authors, the difference between

1/h

t
h
| oudu and Y7 7
=1 i=1

is smaller when one considers v equal to one (for instance) instead of two. Thus, finding the
optimal 7y that reduces the importance of the microstructure effects is of interest. Interestingly,
the eigenfunctions expansion is still valid in this case and very easy indeed. For instance, if

one considers the log-normal model, then we have
Oy o%y?

1=y i(v)Hi(ft), wh i(7) = exp(— +
o7 =S aH(), where i) =exp( + T)

(07/V8k)’

Thus, using our approach will be useful in this case.
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Appendix A

We start the Appendix by giving some lemmas.
Lemma A1l Let f; defined by (3.1). Then:

AB(f,) = ~0:Bi(fu)du + B f)o(£)aW ), (A1)

Vs <, Bi(f) = exp(=0i(u—9)) B 1)+ exp(~5(u—5)) [ exp(di(w =)o) BL(fu) WS,
(A.2)

B[ Ef)osdW,) = peny — PPN, (A3)

where e is given by e;o = Eloso(fs)EL(fs)] (and defined in (4.4)). Thus,

E[/Oh(/ou Ei(fu)osdWs)du] = Pei,oexp( o h5)2+ oh - 1 (A4)

Proof: By Ito’s Lemma, we get

dE;(f;) = AE;(f,) + E.(f)o(f)dw

By defintion, AF;(f;) = —6; F;(f;). Thus, we get (A.1).
Define z, by z, = exp(&;u) F;(f,). By using Ito’s Lemma we get dz, = exp(6;u) E!(f.)o(f.)dW 2.
Hence, z, = z, + [ exp(6;w) E!(fu)o (fu)dW, P . We then get (A.2). We have:
E [/0 (fu)ode] E [/ exp(—=8; (u — s))E,-(fs)odes]
u s B u . B : @)

+B [ exp(=(u =) ([ exp(6 = Do) )W)

=0+ [ exp(=5i0 = 5))[exp(6:(s — )0 () 7)o

= PEio /Ou exp(—d;(u—s))ds = Pei,ol — ex(sp.(—éiu)
Proof of Proposition 2.1. We have Z

,i.e. (A.3). From (A.3), one gets (A.4).0

() t—1+1h t—1+4th
Tt1+ih :/ mydu + o, dW,.
t1+(i—1)h t1+(i—1)h

Therefore,

(h)2 t—1+ih 2 t—1+ih t—1+ih t—1+ih 2
Tt 14in = / mydu |+ 2 / mydu / o AW, |+ / o, dW, | .
t—1+(i—1)h t—1+(i—1)h t—1+(i—1)h t—14(i—1)h

Let us consider f(fl 0,dW, and compute its square by using [to’s Lemma. We have

h h u h
([ owawat =2 [(([" oaW)ouaW,+ [ o2du.
0 0 0 0

Hence,

t—14ih 2 t—14ih w t—14ih
(/ auqu> = 2/ (/ osdWy)o,dW,, + o2du.
t-1+(i—1)h t- 14Dk Jt-14G-1) t-1+(i-1)h
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As a consequence, we get (2.8) and, hence, (2.7).0

Proof of Proposition 2.2. We have

) t—1+ih t—1+ih
T1t—14ih Z/t midu + o1,u8Wi 4.

—14+(i—1)h t—1+(i—1)h
) t—1+ih t—1+ih
Tot—14ih = madu + 02,udWa .
’ t—1+(i—-1)h t—1+(i—1)h
Hence,
t—1+ih t—1+ih
() () /
Ty o iy = my ,du Mo, du
Lt 21tk t—1+(i—1)h t—1+(i-1)h

t—1+ih t—1+ih t—1+ih t—1+ih
-+ (/ mlyudu> </ 02’udW27u> + (/ mg,udu / Ul,udWI,u
t—14+(i—1)h t—14+(i—1)h t—1+(i—1)h t—1+(i—1)h

t—1+ih t—1+ih
+ (/ ) Ul,udWI,u> (/ ) U2,udW2,u
t—14+(i—1)h t—14+(—1)h
By using Ito’s Lemma, we get:

t—1+ih t—1+1h
(/ Ul,udWI,u> (/ 02,udW2,u>
t—1+4(i—1)h t—1+4(i—1)h

t—1+1h U t—1+ih u
= . (/ . U2,de2,s)01,udWI,u + . (/ . Ul,deI,s)UQ,udWQ,u
t—1+(G—1)h Jt—1+(i—1)h t—1+(G—1)h Jt—1+(i—1)h
t—1+ih
+ / Pu01,u024dU.
t—1+(i—1)h

As a consequence, we get (2.17) and, hence, (2.19).0

Proof of Proposition 4.1. Let u; and ¢, defined respectively by
h h
y = / mydu and & = / o, dW. (A.5)
0 0

By Ito’s Lemma, we have:
h h h b ru
2 _ _
Wi, = 2/0 ,u,;bd,uu +/0 dlp, ply = 2/0 MMy du, = 2/0 (/0 msmyds)du. Hence,
E[p}] = 2/ (/ E[msmy]ds)du. But, for u > s:
o Jo
Elmsm,) = Y bbEE(f)E;(fu)]= Y. bibjexp(=d;(u— s))E[E;(f)E;(fs)]

0<i,j<p 0<4,j<p
=P ,b?exp(—6;(u — s)). Hence,
u P p?
/ E[mgymylds = 5i[1 — exp(—d;u)]. As a consequence,
0 .

i=0 Vi
p b?
Eluz) =23 5—;[GXP(—5z’h) — 1+ 4;h].
i=0 Y
Let fi, defined by
h h
iy = 2/ mydu / o dW,. (A.6)
0 0
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By Ito’s Lemma, we have:
fip, = 2/ / o, dW mudu—l-?/ / msds)o,dW,. Hence,

Eljip] = 2E[/O /0 o, dWy)mydu] = 2;0bi /OhE /0 Ei(fu)osdWs))du.

)4

=2p> bi;’o lexp(—d;h) + 0;h — 1] by (A.4).
(h)

i=0 Y
The expectation of the third term in u; 5, 18 zero. Hence

b2 + pbie;,
Blufa) = Bl) + Elin) = 23 2D e () 1+ 5
1=0 ?
= th + 2 Z M[ p(—5,h) -1+ dth] since €0,0 = 0.

52
i=1 ? 1
Therefore we get (4.5) since Efu,(h)] = EE[ugfL)m]
For a small h, since §; # 0, we have: [exp(—d;h) — 1+ &;h] ~ §2h*/2. Thus, (4.6) is deduced.O

Proof of Proposition 4.2. We have Var[u.] = Var[b2h? + 2bohey, + 2Zy), where Z), =
J(f 0y dWy)o,dW,. Thus,

Var[ugn] = 4b20%V ar(en) + 4V ar[Z,]) 4+ 8bohCoven, Zy] = 42h2E[e3] 4+ AE[Z2) + 8bohElen Zy).
We will compute the three terms:

i) We have: E[e2] = E[f) 02du] = aoh.

ii) By Ito’s Lemma, we have:

72 = 2/0h Z dZ, + /Oh d[Z, 7] = 2/0h Z (/Ou 05 dW,)oudW, + /Oh(/ou o dW,)202du.
Therefore,

E[Z}|=E l/oh(/ou ades)zgidu] - /OhE [(2 /O“ (/O deWw> ade5+/()u agds> agdu] .

We have to compute the two terms. Consider the second one. We have:

/OhE K/Ouofds> ]du—ZaZ/ (/ EEy(f.)0%]d )du
a; /Oh </0u exp(—d;(u — s))E[Ei(fs)af]ds) du = Zz;‘)a? /Oh (/Ou exp(—d;(u — s))ds) du

[exp( 6zh) -1+ 5zh]

M-

Il
)

K3

=
Sl R

Il
)

Consider now the first term. Let us compute at a first step F [( / ( / adew) adeS) E;i( fu)] )
o \Jo

This term is zero when i = 0 since Ey(.) = 1. For ¢ # 0, we have:

BZES) = E ([ ([ owdWa) ouws) Bir)] = B[ ([ oudWs) Ei(f)rsaw| by

(A.2),
= [/Ou (/08 adew> pexp(—d;(u — s))Ei(fu)IG(fs)Ost] by (4.4),

:pE[/Ou(/Osode)eXp (u—s) Zem }
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_ piei,j ([ BB ()owdma)) exp(=6,u  5))ds
- pz i [ ([ Eloexp(—5(s — w)Es(fu) o fu)rudu] ) exp(~6:(u — 5))ds by (4.2),

Pi U s
— 2 .. — . — . — . —
=p jgoew/o (/0 exp(—d,(s w))e],odw> exp(—d;(u — s))ds
Di U s
=p? Z ei’j/ (/0 exp(—d;(s — w))ejyodw) exp(—d;(u — s))ds since egp =0

ejo |1 —exp(—d;u) exp(—d;u) —exp(—d;u)
—,026”3 [ 0i - J5z'—5j

Hence,

E[/Oh Zuodu] = /OhE [(/Ou (/O adew> ade5> agdu]
_ iai /hE [(/u (/0 adew> odeS) Ei(fu)du]

_, Zaz/ [ e 5 ll — exgi(—éiu) B exp(—éj'lgg :;};{p(—&iu)” du

- €5,0 1 —exp(—0;h) 1—exp(—d;h) 1—exp(—d;h)
=p Zaz [Z €ij d; |f57 B 62 - 5;(6; — 6;) + 5.0 —5,) ” . (A

As a summary,
P2

E[Z] =% ‘;2 lexp(—8;h) — 1+ 8]
=0 ¢
ejo [h 1—exp(=dih) 1—exp(—d;h) 1—exp(—4;h)
20 Zaz [Z e [51- 52 50i-0) T ami-s) || @Y

111)6hZh—/ Zdau—i—/ ddZau—i-/ d[Z, ¢l / ZuoudW, +/ £20,dW, +/ o2, du.
Thus,

= h 9 _ P
E[ehZh]—E[/O 0., Eudul —ga,/ / E[E;(fy)osdW]

¢ hoeip C. aieip :
= Zai/ p6—(1 —exp(—d;u))du = p>_ 52’ lexp(—d;h) — 1 + §;h] since egp = 0.
i=0 70 i i=1 Y
Hence,
P g2
Var|ug ] = 4agbih® + 8b0hpz 52 Olexp(—6;h) — 1+ 6;h] + 43 %[exp(—&h) — 1+ 4;h)
i=1 =0 %
e; 1 —exp(—d;h) 1—exp(—0;h) 1—exp(=d;h)]|]| .
+8p% ay e 22 l— — — I+ ,l.e. (4.9).
Z [Z oy |6 o7 6; (i — &) 6i(0; — 4) (49)
) ' t—1+ih
The random variables u,”” +(i—1)n A€ uncorrelated since / ) o, dW, and
t—14(i—1)h

t—1+ih u
/ ( / osdWy)o,dW, are martingale difference sequences.
t—1+(@i—1)h Jt—1+(i—1)h
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Thus, Var|us(h)] = VaT[ugli)l +in) /-
For a small h, we have:

i) [exp(—d;h) — 1 + &;h] ~ 62h*/2;
. h 1—exp(=6;h) 1—exp(—6;h) 1—exp(=6;h) h3d; 5
A — = h?).
s, 7 50,-0) a8 5 o)
Hence, for a small h, the dominant term in (4.9) is the third one. Thus, we get (4.11).0

Proof of Proposition 4.3. We have:

t—1+ih t—1+ih —1+ih
Cov(ufly, [ 2du) = Bluf?), [ 24u] — Eful) o2d
Ov(ut—Hh t—14(i—1)h Oy u) [ut—l—zh t—14(i—1)h Oy U] [ut—l—zh] [t 14(i—1)h Oy ’LL]
t—1+ih ~
= B[, / oy O] = Waghd = BI(Bh + 2ohey +27) / o2du] — hagh?
t—1+(i—1)h 0

= 2E[(bohen + Zn) /0 " o2du].
We have: E[Eh/ o2du] = E[/ £402du)] = Zal/ fu / osdW]

p
=p). Zégo[exp( 0;h) — 14 6;h] since ego = 0 and (A.4).

=1 7

. rh h u . ho. ho.
Moreover: E[Zh/ o2du] = E[/ (/ o2du)dZ,] + E[/ Zyo2du] = E[/ 7,02 du)
0 0 Jo 0 0

P pi
9 ejo |h 1—exp(=d;h) 1 —exp(=d;h) 1—exp(=dih)
_ . o — AT).
g ga JZ:) s LSz' o7 6;(6;i — 65) TR0 - 67) by (A.7)
Hence,
py ~[titih L aieip
C’ov(ung)ih, /—1+(i—1)h o2du) = 2bohp; 7 [exp(—=d;h) — 1 + 6;h]
€0 1 —exp(—d;h) 1—exp(—d;h) 1—exp(—0d;h)
, o _ _D
+2'0 Z i [Z Cid d; [(51- (51-2 (5]'((51' - (5j) + 0;(6; — 5_7')

Appendix B

In this Appendix, we compute some variables used in the text or the Tables.
1- Mean and variance of the integrated volatility: Meddahi (2001b) shows that:

a2
E[IV}] = ay andVar[IV;] = 22 52 5lexp(—d;) — 1+ 6;). (B.1)
i=1 "t

2- Coefficienst e; ;: Meddahi (2001b) shows that:
For an affine model: e,y = v2kf and e;; = 0.

2 j—1
For a log-normal model: e,y = v2 \/;exp (0 + 16k> (0/v/8k)

G-1

3- Coefficients b;(h) c¢;(h) We have to compute the coefficients in the right part of (4.23).
The coefficients Cov(RV;, IV;) and Var[RV,(h)] are already computed.
i) Cov(ry, IV;) = Cov([/, 0udWy, Ji; opdu) = E(J;_; 0udW, J;_, o2du)
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= E(f{_ () osdWy)o2du + [ 1( W 0%ds)o,dW,) by Ito’s Lemma
= E(ftt—l(ftu—l Ude Qdu - pz i%, 0 eXp 5) -1+ 67,] by (A4)
ii) Cov(ry, RVy(h)) = Cov(ry, IV}) + Cov(rt,ut(h)) But:

1
Cov(ry, ur(h) = Cov(SiLh 1 i Til s ) = 5 Cov(ry i) =

1 h h
hE(r§ )1+h“§ )1+h)-

By using Ito’s Lemma we get:
Elr"s s ] = B (J5" oudWa) (51 000 W) oud W)

p
— Eft 1+h(ftu_1_|_h O'de Qdu — pz 4 ZO exp 5'Lh) —1 -+ 5’Lh] by (A4)

Hence, Cov(ry, ui(h P Z azez 0 lexp( 6¢h) — 1+ 6;h].

i) Var(ry) = E[ft 1 audu] = qyg.
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