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RÉSUMÉ 

 
 Dans cet article, nous proposons une nouvelle approche pour la modélisation de 
la volatilité en temps discret et continu. Nous adoptons la même approche que la 
littérature de la volatilité stochastique en supposant que la volatilité est une fonction 
d’une variable d’état. Néanmoins, au lieu de supposer que la fonction de lien est 
donnée de manière ad hoc (par exemple, exponentielle ou affine), nous supposons que 
c’est une combinaison linéaire des fonctions propres de l’opérateur espérance 
conditionnelle (ou générateur infinitésimal) associé à la variable d’état en temps discret 
(ou continu). Les modèles populaires exponentiels et racine carrée sont des exemples 
où les fonctions propres sont respectivement les polynômes de Hermite et de Laguerre. 
L’approche par fonctions propres a au moins six avantages : i) elle est générale puisque 
toute fonction de carré intégrale peut être écrite comme combinaison linéaire des 
fonctions propres; ii) l’orthogonalité des fonctions propres permet d’utiliser les 
interprétations usuelles de l’analyse en composantes principales linéaires; iii) les 
dynamiques induites de la variance et du carré de l’innovation sont des ARMA et donc 
sont simples pour la prévision et l’inférence statistique; iv) plus important, cette 
approche génère des queues épaisses pour les processus de volatilité et de 
rendements; v) à l’opposé des modèles usuels, la variance de la variance est une 
fonction flexible de la variance; vi) ces modèles sont robustes vis-à-vis de l’agrégation 
temporelle. 
 
Mots clés : volatilité, volatilité stochastique, générateur infinitésimal, espérance 

conditionnelle, fonctions propres, ARMA, queues épaisses, GMM 
 
 
 

ABSTRACT 
 
 In this paper, we introduce a new approach for volatility modeling in discrete and 
continuous time. We follow the stochastic volatility literature by assuming that the 
variance is a function of a state variable. However, instead of assuming that the loading 
function is ad hoc (e.g., exponential or affine), we assume that it is a linear combination 
of the eigenfunctions of the conditional expectation (resp. infinitesimal generator) 
operator associated to the state variable in discrete (resp. continuous) time. Special 
examples are the popular log-normal and square-root models where the eigenfunctions 
are the Hermite and Laguerre polynomials respectively. The eigenfunction approach 
has at least six advantages: i) it is general since any square integrable function may be 
written as a linear combination of the eigenfunctions; ii) the orthogonality of the 
eigenfunctions leads to the traditional interpretations of the linear principal components 
analysis; iii) the implied dynamics of the variance and squared return processes are 
ARMA and, hence, simple for forecasting and inference purposes; (iv) more importantly, 
this generates fat tails for the variance and returns processes; v) in contrast to popular 
models, the variance of the variance is a flexible function of the variance; vi) these 
models are closed under temporal aggregation. 
 
Key words : volatility, stochastic volatility, infinitesimal generator, conditional 

expectation, eigenfunctions, ARMA, fat tails, GMM 
 
 



1 Introduction

In 1963, Benoit Mandelbrot reported two important facts that characterize �nancial returns:

fat tails and the clustering e�ect of the shocks. This lead researchers to introduce new models

capturing these two empirical facts. The most important contribution is Engle (1982) who

introduces the ARCHmodels and show that time varying volatility implies fat tails and clustering

e�ect. The initial ARCH model was generalized and improved in several directions to better

describe the data, in particular by Bollerslev (1986, GARCH), Nelson (1991, EGARCH) and

Baillie, Bollerslev and Mikkelsen (1996, FIGARCH). Following the main idea of ARCH models,

i.e. time-varying volatility, the Stochastic Volatility (SV) class of models was introduced by

specifying the volatility as an unobservable state variable. Examples of SV models are the

log-normal ones of Taylor (1986), Nelson (1988) and Harvey, Ruiz and Shephard (1994), and the

stochastic autoregressive volatility models (SARV) of Andersen (1994) in discrete time, Wiggins

(1987) and Melino and Turnbull (1990) in continuous time as well as square-root and aÆne

models of Heston (1993) and DuÆe, Pan and Singleton (2000) respectively.1

Nowadays, it is well accepted that ARCH and SV models capture well the clustering e�ect.

However, this is not the case for the fat tails. In particular, recent works on exchange rates

as Kim, Shephard and Chib (1998) and especially on asset returns, as Bakschi, Cao and Chen

(1997), Andersen, Benzoni and Lund (2001), suggest that the popular models do not capture

well the data tails like the kurtosis. This lead to some generalization of the popular models

by including jumps in the returns or the volatility (e.g., Andersen, Benzoni, and Lund, 2001;

Bates, 1996; Chernov et al., 1999; DuÆe, Pan and Singleton, 1999; Eraker, Johannes and Polson,

1999) or by taking a multifactor model for the volatility (e.g., Gallant, Hsu and Tauchen, 1999;

Meddahi and Renault, 1996). This lead also to consider alternative speci�cation of the variance

process (e.g., Jones, 2000; Chernov et al., 2001; Barndor�-Nielsen and Shephard, 2001).

In this paper, we will �rst explain why the popular models fail to capture the tails of the

data. Then, we show how to extend them in order to generate processes with fat tails and

describe well the dynamics of the data. As in the SV literature, we assume that the variance is

a function of a state variable. However, instead of assuming that the loading function is ad hoc

(e.g., exponential or aÆne), we assume that it is a linear combination of the eigenfunctions of the

conditional expectation (resp in�nitesimal generator) operator associated to the state variable

in discrete (resp continuous) time.

To understand why the popular models fail to capture fat tails, let us make an important

di�erence between the two facts. The fat tails are related to the unconditional distribution of the

returns while the clustering e�ect is related to the conditional distribution of the returns. But

these two distributions describe two very di�erent characteristics. For instance, two di�erent

processes may have the same marginal Gaussian distribution while one is i.i.d. and the other one

is a Gaussian AR(1) or a long-memory process. As a consequence, a volatility model will �t more

and more the data if the unconditional and the conditional distributions are less and less linked.

1See Bollerslev, Engle and Nelson (1994) for a review of the ARCH literature, Ghysels, Harvey and Renault
(1996) and Shephard (1996) for the SV one. See Andersen (1992) and Meddahi and Renault (2000) for a theoretical
comparison between ARCH and SV and Kim, Shephard and Chib (1998) for an empirical one.
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This is not the case of GARCH models where the strong persistence of the volatility suggests

that in many empirical cases, returns fourth moment is in�nite.2 The EGARCH and especially

SV models were an important improvement since they reduce the link between the unconditional

and conditional distributions. In particular, all the moments are �nite in these models. Two

factors in volatility models also reduces this link since one factor captures the unconditional

distribution of the returns (fat tails) while the second one captures the conditional distribution

(volatility persistence). Empirical studies that consider two factor models in the volatility,

e.g. Barndor�-Nielsen and Shephard (2001) and Chernov et al. (2001), �nd that one factor is

strongly mean reverting while the other one is slowly mean reverting. Typically, the �rst one

captures the fat tails while the second one captures the persistence of the volatility. Another

approach that have this 
exibility is considered in Chen, Hansen and Scheinkman (2000). For

multivariate di�usion modeling purposes, they specify the marginal distribution of the process

and the di�usion term. Then, the drift and the conditional distribution are deduced.3

In this paper, we consider a 
exible approach for volatility modeling. We follow the main

idea of the SV literature, that is by specifying the volatility as a function of a state variable.

Thus, all the dynamics of the volatility and, hence, those of the returns, will be governed by the

dynamic of the state variable. This state variable may be governed for instance by a Gaussian

AR(1) process (as for log-normal models) or a square-root model (as for square-root and aÆne

models). However, rather than specifying that the variance is equal to a speci�c function of

the state variable as exponential (log-normal case) or identity (square-root and aÆne cases),

we will assume that the variance is a 
exible form of the state variable. Many choices of

this 
exible form may be considered. In this paper, we assume that the variance is a linear

combination of the eigenfunctions of the conditional expectation (resp in�nitesimal generator)

operator associated to the state variable in discrete (resp continuous) time. To be more speci�c,

assume that the state variable ft that governs the volatility is a standardized Gaussian AR(1)

process, i.e., ft = 
ft�1 +
p
1� 
2vt, vt i:i:d: N (0; 1) where j 
 j< 1: Then if one considers

the Hermite polynomials, Hi(:), we have E[Hi(ft+1) j f� ; � � t] = 
iHi(ft), i.e. the Hermite

polynomial Hi is an AR(1) process. This justi�es the eigenfunction terminology.. Moreover,

the Hermite polynomials are uncorrelated and any square-integrable function of ft is a linear

combination of the former. Hence, specifying the variance as a linear combination of the Hermite

polynomials is a 
exible approach. In particular, this is the case for the exponential function.

However, as we will see later, the exponential function puts an important weight (more than

75%) on the �rst eigenfunction, H1(ft) = ft, and less on higher order polynomials that capture

fat tails. This is mainly why the log-normal model does not capture well the fat tails since

the unconditional distribution of H1(ft) is Gaussian. In this paper we will set these weights as

free parameters and estimate them. This will generate fat tails. It is important to understand

that we are not considering approximation of the volatility in terms of linear combination of the

Hermite polynomials. We assume that the true volatility is a linear combination of the Hermite

2Indeed, if "t is a GARCH process, then 9r� such that 8r > r� E[j "t jr] = +1, which is clearly a limitation.
3Barkovec and Kluppelberg (2000) suggest also the same approach in the univariate case.
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polynomials. This may be viewed as a reduced form of the volatility.4 Then we make the usual

statistical inference, as speci�cation tests.

The previous decomposition is not speci�c to Gaussian processes and Hermite polynomials.

Indeed there is a general theory in terms of eigenfunctions of the conditional expectation

operator of a state variable ft in both discrete and continuous time. In the Gaussian case, the

eigenfunctions are the Hermite polynomials while in the square-root model of Heston (1993), the

eigenfunctions are the Laguerre polynomials. It turns out that Heston (1993) sets the variance

equal to the �rst eigenfunction. Thus, the �rst eigenfunction explains 100% of the volatility while

its marginal distribution is Gamma, i.e. with thin tails. As a consequence, one will have more

tails by adding higher order polynomials in the variance decomposition. Finally, in continuous

time, the eigenfunctions are also those of the in�nitesimal generator of the di�usion; see Hansen

and Scheinkman (1995) and Hansen, Scheinkman and Touzi (1998).

Indeed, our approach was motivated by these works and by the subsequent works that

consider these eigenfunctions as nonlinear principal components (Darolles, Florens and Renault,

1998; Darolles, Florens and Gouri�eroux, 1998; Chen, Hansen and Scheinkman, 2000). Instead

of being nonparametric as in these papers, we adopt a parametric approach. Therefore, the

estimation and implementation of our approach are simpler. Besides, we consider latent variables

(SV models) and, hence, the observable processes that we consider are not Markovian. Thus,

on one hand, by being parametric, we are less general than these papers in the Markovian case

and, on the other hand, we are more general since we can consider non Markovian processes.

In summary, our approach of volatility modeling consists on considering a state variable

with simple dynamics and specifying the variance as a linear combination of the eigenfunctions

associated to the state variable. This approach is general and encompasses all the popular

models. Moreover, while our �rst interest is modeling volatility, it is clear that our approach is

a general one for nonlinear state space modeling.

The rest of the paper is organized as follows. In section 2, we explain why the log-normal and

square-root models fail to capture fat tails. Then we introduce the Hermite SV model, HSV,

(resp Laguerre, LSV) where the variance is a linear combination of Hermite (resp Laguerre)

polynomials of a Gaussian AR(1) (resp square-root) process. In this section, we study the

properties of these models. In particular: we characterize the moments of discrete time models

while Meddahi (2001-a) does for continuous time ones; we consider an important robustness

property in terms of the long run (Conley et al., 1997; Conley, Hansen and Liu, 1997); we use

the Fiorentini and Sentana's (1998) persistence to derive the persistence of the volatility and the

squared residuals; following Meddahi and Renault (2000), we give the semiparametric models

that Meddahi (2001-b) showed that they are closed under temporal aggregation; we characterize

the asymptotic behavior of the kurtosis of the aggregated process; �nally, we show that the

variance of the variance has a nice property that usual models do not have, which was criticized

by Nelson and Foster (1994). In section 3, we recap the general theory of eigenfunctions of

conditional expectations and in�nitesimal generator operators and provide several examples. In

section 4, we introduce the general class of the Eigenfunctions Stochastic Volatility (ESV) models

4I thank Lars Hansen for giving me this argument.
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and study their properties. Moreover, we propose a new approach for multifactor modeling. The

last section concludes and proposes several extensions while the Appendix provides the proofs.

2 The Hermite and Laguerre stochastic volatility models

In this section, we explain in the �rst subsection why the log-normal and square-root SV models

fail to capture fat tails in both discrete and continuous time. Then we introduce the Hermite

and Laguerre SV model in discrete and continuous time in two di�erent subsections. Their

properties are studied.

2.1 Understanding why the log-normal and square-root SV models fail to

capture fat tails

2.1.1 The log-normal SV model

Consider the most popular SV model in discrete time, i.e. the log-normal model considered by

Taylor (1986), Nelson (1988) and popularized by Harvey, Ruiz and Shephard (1994):

"t = �t�1ut; with (2.1)

log(�2t ) = ! + 
 log(�2t�1) + �vvt; where (2.2)

(ut; vt) i:i:d: N
  

0
0

!
;

"
1 �
� 1

#!
: (2.3)

As we pointed out in the introduction, the usual SV model fails to capture the tails of the

data. For instance, Kim, Shephard and Chib (1998) compare the log-normal SV with Gaussian

and Student GARCH(1,1). They show by a likelihood comparison that the log-normal SV

dominates the Gaussian GARCH(1,1) but that the Student GARCH(1,1) model is as good as

(e.g., Pound-US$ exchange rate) or better (Yen-US$ exchange rate) than the log-normal one.

To understand why the log-normal fails to capture very fat tails, let us compute the kurtosis of

the returns. Simple calculus show that

Kurtosis["t] =
E["4t ]

E["2t ]
2
= E[u4t ] exp(�

2) = Kurtosis[ut]
E[�4t ]

E[�2t ]
2

where �2 � �2v
1� 
2

: (2.4)

From this equation, it is clear that there are two ways to increase the kurtosis of the residuals

"t. The �rst one is to assume that the process ut has fat tail as for Student distribution. This

approach is considered in discrete time in the ARCH literature by Bollerslev (1987) and in the

SV literature by Jacquier, Polson and Rossi (1999) and Chib, Nardari and Shephard (2000).

Observe that in continuous time, a Gaussian assumption of the standardized residuals is crucial

since they are assumed to be Brownian motions and, hence, Gaussian. Moreover, while in the

GARCH case, assuming that the standardized residuals are Student is not ambiguous, it is in

the SV case. To be more speci�c, assume that

"t = �t�1ut where ut � T (�):
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But a T(�) random variable ut may be represented (see, e.g., Jacquier, Polson and Rossi, 1999)

by ut = ~ut
p
zt where ~ut and zt are two independent random variables that are respectively

N (0; 1) and inverse Gamma (i.e., �=zt is �
2
�). Then, the process "t is given by

"t = ~�t�1~ut where ~�t�1 = �t�1
p
zt:

Therefore, the conditional variance of "t given the sigma algebra generated by the past of "t�1 and

�t�1, i.e. �("� ; �� ; � � t�1), is �2t�1 while the conditional variance of "t given �("� ; ~�� ; � � t�1)
is ~�2t�1. The problem in the SV case is that these two informations are not available for the

econometrician. Therefore, there is an identi�cation problem and we need an identi�cation

assumption. For instance, by assuming that the log-variance is a Gaussian AR(1) process,

Jacquier, Polson and Rossi (1999) and Chib, Nardari and Shephard (2000) identify the model.

Observe that the model with Student distribution is a model with two factors in the volatility.

Moreover, this is a multiplicative factors model. Finally, in continuous time, this looks like a

subordinated process (Clark, 1973). See our multifactor approach in section 4.

Here, and in all our approach, we also allow the standardized residual to be Student or any

other random variable. Thus, we are trying to explain why the volatility model, i.e. the process

�2t , fails to capture fat tails and how to improve it for a given process ut.

Assume that the kurtosis of ut is �xed. Hence, the kurtosis of "t is governed by �2 which is

the variance of the log-variance. In practise, by using the empirical results of Kim, Shephard

and Chib (1998), we can show that in the case of exchange rates, the value of exp(�2) is smaller

than 2. In another analysis, Jacquier, Polson and Rossi (1994) show that for all the stock

returns they consider, exp(�2) is smaller than 2.2. As a consequence, in the log-normal model,

the kurtosis of the returns is less that 2.5 times the kurtosis of the standardized residual, ut,

which is assumed to be Gaussian. The equality between the �rst term and the last one in (2.4)

is true in a general case since this needs only that ut is independent from the past of �t�1 and

"t�1. Thus, to increase the kurtosis of "t, one has to increase the second moment of the variance

process, i.e. E[�4t ]. This is what we consider now.

In the log-normal model, the variance �2t is assumed to be a Gaussian AR(1) process. Let

us de�ne the state variable ft by

ft � log(�2t )� �

�
where � � E[log(�2t )]) =

!

1� 

:

Then, it is easy to show that

ft = 
ft�1 +
q
1� 
2 vt and ft � N (0; 1): (2.5)

The �rst part of (2.5) means that the process ft is Gaussian AR(1) while the second part

says that the unconditional distribution of ft is N (0; 1). It is important to notice that the

unconditional distribution of ft does not depend on the persistence parameter 
. The variance

process �2t is related to ft by:

�2t = exp(�) exp(�ft):

To see how one can increase the second moment of �2t from the previous formula, we will consider

an expansion of exp(�ft). One can for instance consider the Taylor expansion on f it , i = 0; 1; :::.
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We prefer to do the expansion in terms of the Hermite polynomials. The main reason is that

in the Taylor expansion, the monomials f it are correlated while Hermite polynomials are not.

Moreover, the dynamics of f it are more complicated than Hermite's ones (ARMA(i,i-1) and

AR(1) respectively).

The Hermite polynomials are characterized by

H0(x) = 1; H1(x) = x and 8i > 1;Hi(x) =
1p
i
fxHi�1(x)�

p
i� 1Hi�2(x)g: (2.6)

Then, it is well known that

E[Hi(ft+1) j "� ; f� ; � � t] = 
iHi(ft) and E[Hi(ft)Hj(ft)] = Æij : (2.7)

The �rst part of (2.7) says that any Hermite polynomial is an AR(1). However, it is

heteroskedastic. In the Appendix, we give the form of the heteroskedasticity. Since H0(ft) = 1,

the second part of (2.7) implies that E[Hi(ft)] = 0 for i � 0. It turns out that we have the

relation (in mean square)

exp(�ft � �2

2
) =

1X
i=0

�ip
i!
Hi(ft); m:s: (2.8)

As a consequence, the variance process is a linear combination of the Hermite polynomials with

�2t =
1X
i=0

aiHi(ft); where ai = exp(�+
�2

2
)
�ip
i!
: (2.9)

This decomposition is crucial to understand why the log-normal volatility model fails to generate

fat tails. In this decomposition, the main coeÆcient is � since this governs ai, that is the relative

importance of each Hermite polynomial, as well as the speed of convergence of ai to zero.

Consider the case of Pound-US$ and Yen-US$ of Kim, Shephard and Chib (1998). By using

their estimates, the value of � is .75 and .628 respectively. As a consequence, the sequence ai is

decreasing and converges very quickly to zero. In Table 1, we give ai, i = 0; 1; :::; 10 for the two

data sets. Since H0 = 1 and the Hermite polynomials are orthogonal with variance equal to one,

we can use the usual variance decomposition in the factor analysis to give the relative weight

of each component Hi in (2.9) as well as the cumulative weights. More precisely, the relative

weight wi of the polynomial Hi in (2.9) and the cumulative weights cumi of the H1; :::;Hi, in

this decomposition are given by

wi =
a2iP1
j=1 a

2
j

and cumi =
iX

j=1

wj ; for i � 1: (2.10)

The third and seventh column of Table 1 means that the relative weight of the �rst Hermite

polynomial, i.e. H1(ft) = ft, is almost 75% and 82% respectively. This is very large if one

wants to capture fat tails since the distribution of H1(ft) is a N (0; 1). This is why log-normal

volatility models fail to capture fat tails. Moreover, Table 1 tells us that the relative weight of

the second polynomial, H2(ft), is around 22% and 16% respectively. Table 1 means also that

the �rst four polynomials explain almost all the variation of the volatility. Finally, observe that
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since the persistence of the Hermite polynomials is decreasing with i (see Table 1), for long

horizon predictability of the variance, the relative weight of H1(ft) is bigger than 75% and 82%

respectively.

It turns out that the log-normal continuous time model (Wiggins, 1987; Melino and Turnbull,

1990) has the same drawback. To see this, consider the model

dyt = �t

�q
1� �2dW

(1)
t + �dW

(2)
t

�
(2.11)

d log(�2t ) = k[� � log(�2t )]dt+ �dW
(2)
t : (2.12)

As for the discrete time case, let us de�ne the state variable ft by

ft �
p
2k

�
(log �2t � �):

Then, we have log(�2t ) = � + �p
2k
ft;

dft = �kftdt+
p
2k dW

(2)
t (2.13)

with ft � N (0; 1). As a consequence, by using (2.8), we have

�2t =
1X
i=0

aiHi(ft); where ai = exp(� +
�2

4k
)
(�=

p
2k)ip
i!

: (2.14)

Let us now consider the empirical analysis of Andersen, Benzoni and Lund (2001). They use the

EÆcient Method of Moment (EMM, Gallant and Tauchen, 1996) to estimate various continuous

time SV models on the S&P500 returns including the log-normal one with and without leverage

e�ect. By using their estimates, we report in Table 2 the coeÆcients ai in the decomposition

(2.14) as well as the relative and cumulative weights of the Hermite polynomials for the models

without and with leverage e�ect respectively. Again, the �rst eigenfunction H1(ft) has a very

important weight, especially in the model without leverage e�ect (almost 95%). Moreover, the

�rst four eigenfunctions explain almost all the variance. Thus, the log-normal model does not

capture fat tail. This is the main reason Andersen, Benzoni and Lund (2001) reject it.

It is well known that stock returns, and especially index returns, exhibit leverage e�ect

(Black, 1976; Nelson, 1991). Hence, a model that captures this fact will better �t the data.

Table 2 suggests that another advantage of incorporating leverage e�ect is that it reduces the

link between the unconditional and conditional distribution of the volatility. In particular the

mean (a0) and the second moment (
P1
i=0 a

2
i ) of the variance are higher in the leverage model.

2.1.2 The square-root SV model

Another popular SV model in the continuous time literature is the Heston (1993) model where

the variance process �2t is square-root, i.e.

dyt = �t

�q
1� �2dW

(1)
t + �dW

(2)
t

�
where

d�2t = k(� � �2t )dt+ ��tdW
(2)
t ; k > 0:
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De�ne the real � and the process ft by

� =
2k�

�2
� 1; ft =

2k

�2
�2t : (2.15)

Then, by Ito's Lemma, we have

dft = k(�+ 1� ft) +
p
2k
p
ftdW

(2)
t : (2.16)

It turns out that the di�usion (2.16) admits as eigenfunctions the Laguerre polynomials L
(�)
i (ft)

associated to the eigenvalues Æi = ki. The Laguerre polynomials L
(�)
i are characterized by

 
i+ �
i

!1=2

i L
(�)
i (x) =

 
i� 1 + �
i� 1

!1=2

(�x+2i+��1)L(�)
i�1(x)�

 
i� 2 + �
i� 2

!1=2

(i+��1)L(�)
i�2(x);

(2.17)

where L
(�)
0 (x) = 1; L

(�)
1 (x) =

1 + �� xp
1 + �

:

Thus, the variance process �2t is a linear combination of the constant and the �rst eigenfunction:

�2t = � � �p
�+ 1

L
(�)
1 (ft); or

�2t = a0L
(�)
0 (ft) + a1L

(�)
1 (ft) where a0 = � and a1 = �

p
��p
2k
: (2.18)

In other words, in this model, the �rst eigenfunction explains 100% of the variance while its

marginal distribution is 
(�+1; �=(�+1))5 and, hence, with thin tails. This is the main reason

why this model is rejected by Andersen, Benzoni and Lund (2001).

Observe that the aÆne model of DuÆe, Pan and Singleton (2000) has also a variance process

which is a linear function of the state variable. More precisely, assume that

d�2t = k(� � �2t )dt+
q
�0 + �2�2t dW

(2)
t ; k > 0:

Assume that � > 0. De�ne ~�, ~� and ~ft by

~� = � +
�0
�2
; ~� =

2k~�

�2
� 1 and ~ft =

2k

�2
(
�0
�2

+ �2t ):

Then, by Ito's Lemma, it is easy to show that ~ft is characterized by

d ~ft = k(~�+ 1� ~ft) +
p
2k
q

~ftdW
(2)
t :

and that the variance process �2t is given by

�2t = ~a0L
(~�)
0 ( ~ft) + ~a1L

(~�)
1 ( ~ft) where ~a0 = � and ~a1 = �

~�p
~�+ 1

= �
p
�2� + �0p

2k
:

Note that since the variance process is not observable, there is an identi�cation problem. In

particular, one can identify only k, � and ~a1. Hence, one can identify (k; �; �2 +
�0
�
).6

5A positive random variable X is called 
(a; b) if its density function is pX(x) = xa�1 exp(�x=b)=(�(a)ba)
where �(:) is the Gamma function de�ned by �(a) =

R +1
0

exp(�x)xa�1dx; see Johnson, Kotz and Balakrishnan

(1994), page 337.
6Another potential statistical problem in this model is that the support of �2t depends on unknown parameters.
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2.1.3 Our approach

The main idea of our approach is to relax the restrictions on the parameters ai in (2.9) and

(2.14) for the log-normal model in discrete and continuous time respectively and in (2.18) for

the square-root model. Consider the log-normal case. Since the sample size is �nite, one has to

specify a parametric model. Two approaches may be considered. The �rst one is to parametrize

the sequence ai by a �nite parameter � and estimate �.7 The log-normal model is a special case.

In order to have fat tails, one has to allow the relative weight of the �rst polynomial H1 to

be small. The second approach is to set the variance as a �nite linear combination of Hermite

polynomials and then estimate the coeÆcients ai. In the empirical part, we will follow the second

approach. However, our model allows the number of Hermite polynomials to be in�nite. In the

square-root case, in order to have fat tails, one has to put high order Laguerre polynomials in

the variance decomposition (2.18).

To show the usefulness of our approach, consider the model de�ned by (2.1), (2.3), (2.5), where

�2t = a0 + a2H2(ft):

Let us estimate this model with the Pound-US$ and Yen-US$ exchange rates data considered

by Kim, Shephard and Chib (1998).8 Assume that there is no leverage e�ect (� = 0) which is

the case for exchange rates. Here, the coeÆcient a0 and a2 are free and � = (a0; a2; 
) is the

parameter of interest. We call this model the Hermite SV model of order 2, HSV(2). The reason

why we consider this simple model is the following: We know that a GARCH(1,1) describes

well the dynamics of the volatility. Hence, assuming that the squared-residual process is an

ARMA(1,1) is a reasonable assumption. It turns out that this means that we need only one

Hermite polynomial in the variance decomposition (see below). Moreover, for variance positivity,

we need that the higher polynomial has an even degree. Thus we consider a HSV(2) where a1

is zero.9

Many inference methods may be considered, in particular simulated methods (DuÆe and

Singleton 1993; Gallant and Tauchen, 1996; Gouri�eroux, Monfort and Renault, 1993) or Bayesian

methods (Jacquier, Polson and Rossi, 1994; Kim, Shephard and Chib, 1998). In this paper, we

consider the Generalized Method of Moment (GMM) of Hansen (1982). It is well known that

GMM estimation for SV models based on ad hoc marginal moments is less eÆcient than the

simulated and Bayesian methods (see, e.g., Andersen and Sorensen, 1996; Andersen, Chung and

Sorensen, 1999; Gallant and Tauchen, 1999; Jacquier, Polson and Rossi, 1994). However, we did

GMM inference for its simple implementation. Moreover, in this paper, the comparison between

alternative models is considered through the tail behavior, in particular the fourth moment.

Therefore incorporating this moment in the estimation procedure makes the comparison easier.10

7Recentley, Giraitis, Kokoszka and Leipus (2000) introduced the ARCH(1) model where the variance is a
weighted in�nite sum of the past squared-residual and study their probabilistic and statistical properties.

8Kim, Shephard and Chib (1998) use the same data as Harvey, Ruiz, Shephard (1994), i.e. daily observations
of weekday close exchange rates from 1/10/81 to 28/6/85. The exchange rates are the U.K. Pound and Japanese
Yen, both against the U.S. Dollar.

9This assumption was not rejected by the data.
10We give later a more important reason (see the long run subsection).
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We consider the following moments: E["2t ], E["
4
t ], Cov["

2
t ; "

2
t�j ] for j = 15 and 20. Long

lags are used in order to account for highly persistent volatility. We will see later that, under

Gaussianity of ut, their theoretical formulae are given by

E["2t ] = a0; E["4t ] = 3(a20 + a22); Cov["2t ; "
2
t�j ] = a22


2j : (2.19)

We use the GMM optimal weighting matrix based on the Newey-West (1987) procedure with

10 lags.

In table 3, we report the estimates and their standard errors of a0, a2 and 
 for the two

series. As usual, the persistence parameter is high. In Table 4, we report the empirical values

of the variance, fourth moment and kurtosis of the data, as well as their implied values by the

HSV(2) model and the log-normal by using Kim Shephard and Chib (1998) estimates. Since

these authors used a Bayesian Maximum Likelihood, the did not necessarily match the fourth

moment. Therefore, for a fair comparison, we also estimate the log-normal model by using

the same GMM procedure and same monents as for the HSV model.11 The implied marginal

moments are also reported in Table 4.

The main message of Table 4 is that the simple Hermite HSV(2) model with one eigenfunction

captures well the kurtosis of the data. We are not saying that this is not the case for log-normal

models. In fact, since the GMM procedure that we use is not very eÆcient, one can not reject that

the implied kurtosis of the log-normal model is di�erent from the data kurtosis. However, it is

of interest to note that the the more eÆcient (Bayesian) likelihood estimators of Kim, Shephard

and Chib (1998) imply a much smaller kurtosis than the GMM estimators. This implicitly

suggests that the log-normal model is misspeci�ed. However, by the GMM estimation, even

if the model is misspeci�ed, the implied kurtosis is closer to the empirical kurtosis since we

incorporate the fourth moment in the GMM estimation. Finally, the persistence parameter 


is not very di�erent between both models. This is not surprising because most of the volatility

models imply the same volatility persistence. To clearly establish the usefulness of our approach

for generating fat tails, we need to compare the higher order moments implied by each model.

Before doing this, it is important to notice that if one considers another eigenfunction than

the second one, H2(ft), for instance H4(ft), then one gets similar result since in this case we

have

E["2t ] = a0; E["4t ] = 3(a20 + a24); Cov["2t ; "
2
t�j ] = a24


4j :

In other words, one has to replace a2 by a4 and 
 by 
2. Notice that the implied marginal

moments of "t and covariances of "2t are the same for the two models. This is an additional

reason for using a GMM inference procedure. In Table 6, we report the empirical standardized

six moment as well as the implied ones by the di�erent models.12 For the HSV model, we report

them for four models. They correspond to the cases �2t = a0 + aiHi(ft), i = 2; 4; 6 and 8. From

Table 6, it is clear that Hermite SV models generate fat tails.13 This is very promising for

11We report the estimates in Table 5.
12We report E[y6t =(E[u

6
t ]E[y

2
t ]
3)] by taking E[u6t ] = 15 (Gaussian case). Lemma 1 in the Appendix provides

the theoretical formulae.
13Again, in contrast to the results based on the Bayesian method, the log-normal model based on GMM

estimates implied a sixth moment which close to the empirical one.
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this approach, in particular for stock returns that exhibit much more tails than exchange rate

returns. We are working on this empirical application by using the results of Meddahi (2001-a).

2.2 The Hermite and Laguerre SV models in discrete time

We will now introduce the Hermite and Laguerre SV models in discrete and continuous times.

2.2.1 The model

De�nition 2.1. Discrete time Hermite SV model: A process f"tg is called a Hermite SV

model of order p, HSV(p), with an underlying state variable process fftg if we have:

"t = �t�1ut; with �2t�1 =
pX
i=0

aiHi(ft�1) where (2.20)

ft = 
ft�1 +
q
1� 
2 vt; f0 � N (0; 1); j 
 j< 1; (2.21)

(ut; vt) i:i:d: N
  

0
0

!
;

"
1 �
� 1

#!
; and (2.22)

pX
i=0

a2i <1; (2.23)

where Hi are the Hermite polynomials characterized by (2.6).

In other words, we say that a process "t is a Hermite SV model of order p if its conditional

variance is a linear combination of the H0(ft�1), H1(ft�1),...,Hp(ft�1). We will say that this

is a linear combination of the �rst p Hermite polynomials, H1(ft�1),...,Hp(ft�1), by implicitly

assuming that the constant, H0(ft�1) = 1, is always included. The condition (2.23) ensures that

the variance process is well de�ned when p =1. In this case, �2t�1 is the limit in mean-square

of
Pp
i=0 aiHi(ft�1) when p! +1. The coeÆcient � is the leverage e�ect coeÆcient. As for the

log-normal case, the process ut may be not Gaussian. In particular it may have more tails than

the Gaussian distribution, a Student for example, and may be skewed. In any case, we need the

second moment to be �nite. We will assume that its fourth moment is �nite when we compute

the returns' kurtosis and the covariance structure of the squared returns.

The main assumption in the previous de�nition is (2.21), that is the state variable that

governs the volatility, ft, is a Gaussian AR(1) process. This is why we specify the variance

process as a linear combination of Hermite polynomials. Under (2.21), the Hermite polynomials

are uncorrelated and each polynomial is an AR(1) process. We will see later in sections 3 and

4 that when the dynamics of ft are not given by (2.21), then one has to consider alternative

functions than the Hermite polynomials. Finally, we assume that ft is standardized, i.e. E[ft] =

0 and V ar[ft] = 1, for identi�cation purposes.

Since the Hermite polynomials are uncorrelated, the HSV model may be viewed as

a multifactor model. However, here, the Hermite polynomials are uncorrelated but not

independent. In section 4, we show how one can consider the independent multifactor models.

We now introduce the Laguerre SV model.
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De�nition 2.2. Discrete time Laguerre SV model: A process f"tg is called a Laguerre

SV model of order p, LSV(p), with an underlying state variable process fftg if we have:

"t = �t�1ut; with �2t�1 =
pX
i=0

aiL
(�)
i (ft�1) where (2.24)

2

1� 

ft j Jt�1 � �2(2�+2;

2

1� 


ft�1); f0 � 
(�+1; 1); �1 < � and 0 � 
 < 1; (2.25)

where
pX
i=0

a2i <1 and L
(�)
i are the Laguerre polynomials characterized by (2.17).

In other words, the main di�erence between the HSV and LSV models is that the state

variable ft is a Gaussian AR(1) process while it is (the exact discretization of the) square-root.
14

As a consequence, the variance decomposition involves Hermite polynomials in the HSV model

while it involves Laguerre polynomials in the LSV model.

2.2.2 Positivity

One of the main reasons of the popularity of log-normal SV (and EGARCH) models is that the

speci�cation of the variance as an exponential ensures its positivity. This is not the case for

HSV models. However, since a linear combination of Hermite polynomials is a polynomial, say

Q(:), it is very easy to ensure the variance positivity. Indeed a necessary and suÆcient condition

is that all the real roots of Q(:) have an even order. When the order of the polynomial Q is two,

i.e. in the HSV(2) model, this means that

a21 � 4
a2p
2
(a0 � a2p

2
) � 0 and a2 > 0:

Of course, a suÆcient condition is that Q(:) is the square of a polynomial. For instance, Robinson

and Za�aroni (1998) consider a discrete time SV model with "t = gt�1ut, where gt�1 is a

Gaussian AR(1) process. In this case, the variance process is g2t�1 and, hence, positive. Indeed,

Robinson and Za�aroni's model is a (constrained) HSV(2) model. Stein and Stein (1991) and

Ho, Perraudin and Sorensen (1996) follow the same approach in continuous time. Another

necessary and suÆcient condition is that Q(:) is the sum of two squared polynomials, i.e.,

Q(x) = A(x)2+B(x)2:15 In our model, we assume that
Pp
i=0 aiHi(:) is positive with probability

one. This means that the parameters are constrained.

An alternative parameterization of the volatility is to assume that the log-variance is not an

aÆne function of ft but a quadratic one, i.e.

�2t = exp(�0 + �1ft + �2f
2
t ) with �2 <

1

2
(2.26)

where ft is a Ornstein-Uhlenbeck process. The log-normal model is a special example with

�2 = 0. The restriction on �2 ensures that the second moment of �2t is �nite.
16 Thus, this model

is also a HSV model. Indeed, it is easy to show that this is a HSV(1) with

14The process ft was independently introduced by Gouri�eroux and Jasiak (2001).
15For a nonnegative polynomial Q(x), one can always write it as the product of two conjugate polynomials, i.e.

(A(x) + iB(x))(A(x)� iB(x)). Thus, one has Q(x) = A(x)2 +B(x)2:
16Alternative processes like square-root may be considered. In this case, the assumptions for the square-

integrability of the variance are di�erent.
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a0 = exp(�0 +
�21

2(1 � 2�2)
)

1p
1� 2�2

; a1 =
�1

1� 2�2
a0 and

ai =
1p

i(1� 2�2)
[�1ai�1 + (

p
i� 2� (1� 2�2)

p
i� 1)ai�1] for i � 2: (2.27)

Observe that in this case, it is easy to compute E[�t]
17 and also the coeÆcient in the

decomposition of �t in terms of Hermite polynomials. These coeÆcients have the same form as

(2.27) by replacing �0; �1; �2 by �0=2; �1=2; �2=2 respectively. One can also incorporate higher

order monomials in the exponential function. However, since we need (square) integrability of

the variance process, all the even monomials higher than 3 are precluded while odd monomials

may be considered if one assumes that the corresponding coeÆcients are nonpositive.

2.2.3 The moments

We now compute the moments of the HSV and LSV models. We compute the �rst four moments,

the covariance structures of the squared residual and conditional moment restrictions. Observe

that all the results in this section are special examples of those in section 4. Therefore, for the

proof of the results, one has to read the proofs of the corresponding results in the fourth section.

We start by computing the marginal moments. We recall that, for a given random variable

z, with �nite fourth moment, the later are de�ned by

V ar[z] = E[(z �E[z])2]; Skew[z] =
E[(z �E[z])3]

(V ar[z])3=2
; Kurt[z] =

E[(z �E[z])4]

(V ar[z])2
:

Then, if one considers a HSV(p) or an LSV(p) model where the fourth moment of ut is �nite,

one gets

E["t] = 0; V ar["t] = a0; Kurt["t] = Kurt[ut]

 
1 +

Pp
i=1 a

2
i

a20

!
: (2.28)

As usual in volatility models, time-varying volatility, i.e. ai 6= 0 for some i � 1, implies that the

returns have fatter tails than the standardized residual ut. Observe that we did not give the

form of the skewness. As in the GARCH case, the main reason is that it is not always easy to

compute E[�
3=2
t ]. However, if one speci�es the volatility model is terms the standard deviation,

that is assume that the standard deviation is a linear combination of the eigenfunction, then we

can compute E[�
3=2
t ] of this ESV model. In any case, if the skewness of ut is zero, then this is

also the case for "t.

Time-varying volatility means that the squared residuals are correlated. Indeed, if we assume

that there is no leverage e�ect, i.e. ut and ft are independent, then we have in both HSV and

LSV models:

Cov["2t ; "
2
t�j ] =

pX
i=1

ai

ij : (2.29)

We have:

E["t j "� ; � � t� 1] = 0: (2.30)

17Another model where this is the case is obtained by specifying the conditional standard deviation as a linear
combination of the eigenfunctions. Conditional standard deviation models are considered by Taylor (1986) and
Schwert (1989). An advantage of these models is their robustness against outliers (Davidian and Caroll, 1987).
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Let L be the Lag operator and assume that p is �nite. Then we have:

E[
pY
i=1

(1� 
iL)["2t � a0] j "� ; � � t� p� 1] = 0: (2.31)

The restriction (2.30) is the usual martingale di�erence sequence assumption of the innovation

"t. The equation (2.31) is a multiperiod conditional moment restriction. Such restrictions

introduced by Hansen (1985) are useful for inference purposes. It is important to notice that they

are based on observable. Hence, one can estimate the parameter of interest by the usual GMM

rather than, e.g., simulated methods. This approach is introduced in Meddahi and Renault

(1996, 2000). Indeed, following Andersen (1994), these authors called the models that follow

(2.31) Square-Root Stochastic Autoregressive Variance models of order p, SR-SARV(p). Thus

HSV(p) are included in the class of SR-SARV(p) which is closed under temporal aggregation

(see below). Another advantage of (2.31) is that one can estimate the coeÆcient of interest, in

particular the persistence parameter 
, more eÆciently than by (2.29). This is important because

the squared residual process "2t is heteroskedastic. Thus, one can choose appropriate instruments

in the GMM estimation based on (2.31) to estimate more eÆciently the parameters. For eÆcient

estimation in multiperiod conditional moment restrictions, see Hansen (1985), Hansen, Heaton

and Ogaki (1988) and Hansen and Singleton (1996). Finally, observe that the restriction (2.31)

is true even if the fourth moments of ut and "t are not �nite.

When the fourth moment of "t is �nite, then (2.31) implies that the process wt de�ned by

wt �
pY
i=1

(1� 
iL)["2t � a0] (2.32)

is a weak moving average of order p, MA(p), and, hence, "2t is a weak ARMA(p,p) model with

autoregressive coeÆcient 
1, 
2,...,
p. As a consequence, "t is a weak GARCH(p,p) of Drost

and Nijman (1993); for a detailed comparison between Bollerslev's GARCH, weak GARCH and

SR-SARV models, see Meddahi and Renault (2000). Observe that for eÆciency purposes, one

can compute the moving average parameters which depend on 
; a1; :::; ap, i.e. the ARMA model

is constrained.

In some cases, one knows that a Hermite polynomial Hi is not involved in the variance

decomposition. In this case, the term 1�
iL has to be removed from (2.31) and the conditional

information is �("� ; � � t�p). Moreover, "2t is an ARMA(p-1,p-1). For instance, if one considers

a HSV(2) with a1 = 0 as we did in the previous empirical analysis, then we have the following

restriction

E[(1 � 
2L)["2t � a0] j "� ; � � t� 2] = 0:

2.2.4 The long run

The equation (2.28) implies that the �rst four marginal moments18 depend only on the reals

ai and not on the dynamics of the eigenfunctions. This property is interesting for two reasons.

First, this reduces the link between the marginal and conditional densities of the returns. This

18It is clear that this is also the case for higher moments.
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is in contrast to GARCH models where the high persistence implies in many empirical cases

that the fourth moment is not �nite (if one assumes that the standardized residuals are i.i.d.).

Note that Barndor�-Nielsen and Shephard's (2001) SV model has also this property and that

this is in line with the di�usion modeling approach of Chen, Hansen and Scheinkman (2000).

The second reason is that economists are more concerned with the long run, i.e. the marginal

distribution. Thus, even if we specify a wrong volatility model, i.e. we consider a wrong state

variable ft and, hence, wrong eigenfunctions, we still have the correct marginal moments and

distribution. This is the case for instance when the observations are a subordinated process

(Conley et al., 1997; Conley, Hansen and Liu, 1997).

Another robust property of our model is due to (2.29). This proposition implies that the

covariance structure of the squared residuals is the same for both Hermite and Laguerre models

(with the same coeÆcients ai, i = 0; 1; :::; p, and 
).19 In other words, these two models imply

the same �rst four marginal moments and the same covariance structure of the squared residuals.

Observe that most of the empirical volatility works are concerned only with characteristics, i.e.

try to match these moments. This is an additional reason of using the GMM. Of course, one may

discriminate between these models if one considers marginal moments of order higher than 4 or

other covariance function (e.g. Cov("4t ; "
2
t�h)). This means that in applied work, one can start

by matching these moments. This will indicate how many eigenfunctions one has to include.

Then, one has to consider higher order moments or covariances to �nd the best model between

Hermite and Laguerre ones.

2.2.5 Persistence

In this section, we consider the persistence of the variance process and the squared residual. Of

course, there are many de�nitions of persistence, in particular in volatility models (e.g., Nelson,

1990-a; Bollerslev and Engle, 1993; Gallant, Rossi and Tauchen, 1993). In this paper, we

consider the de�nition of Fiorentini and Sentana (1998). The main reason is that this de�nition

combined with the eigenfunctions allows us to make an interesting decomposition of the variance

process in terms of the eigenfunctions ones.

Fiorentini and Sentana (1998) consider the following de�nition of persistence. Let a process

xt with a conditional mean mt�1, then the persistence of xt is given by

P (xt) � V ar(xt)

V ar(xt)� V ar(mt�1)
: (2.33)

Thus, if xt is an AR(1) process which autoregressive coeÆcient is �, then its persistence is

1=(1 � �2). Thus, if � = 0 (white noise), then the persistence is one while it goes to in�nity

when � goes to one. Finally, the persistence of an ARMA(1,1) is 1 + (�� �)2=(1� �2) where �

and � are respectively the autoregressive and moving average parameters.

By using this de�nition, we can compute the persistence of the variance process and squared

19This is also the case for the Jacobi model that we consider in the fourth section.
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residual process of a HSV or LSV model. Indeed we have

P (�2t ) =

Pp
i=1 a

2
iPp

i=1(1� 
i2)a2i
=

pX
i=1

!iP (Ei(ft)) where !i =
a2iPp
i=1 a

2
i

: (2.34)

Thus, the persistence of the variance process is a weighted average of the polynomials persistence

with the same weights than the variance decomposition.

Now, assume that E[u4t ] <1, then the persistence of the squared residual process, "2t , is

P ("2t ) =
E[u4t ]� (a20=

Pp
i=0 a

2
i )

E[u4t ]� 1
=

E[u4t ]

E[u4t ]� 1

 
1� E["2t ]

2

E["4t ]

!
: (2.35)

We already show that the variance process is ARMA(p,p-1) process while the squared residual

process is an ARMA(p,p) process. On the other hand, the GARCH(1,1) model which is the

benchmark volatility model and which successfully describes the dynamics of the volatility,

implies that the variance process is an AR(1) while the squared residual process is an

ARMA(1,1). Thus, it is of interest to derive the implied autoregressive coeÆcient of an AR(1),

�
, which persistence is the same then the conditional variance process. We show that:

�
2 =
pX
i=1

!i

i2; (2.36)

i.e., the variance process has the same persistence than an AR(1) which squared autoregressive

coeÆcient is a weighted average of the squared autoregressive coeÆcients of the eigenfunctions.

Consider now the persistence of the squared residual process. "2t is equal to the conditional

variance plus a noise. Therefore, if one made the assumption that the conditional variance is an

AR(1), the squared residual process is an ARMA(1,1) which autoregressive coeÆcient is the same

that the AR(1) process. Thus it is interesting to compute the moving average coeÆcient implied

by the empirical persistence of the squared residual in the HSV or LSV model. This is easy to

derive since the Fiorentini and Sentana's persistence for an ARMA(1,1) is 1+ (�
��)2=(1� �
2).

As an example, consider the log-normal model. It is easy to show that in this case, (2.34)

and (2.35) imply that

P (�2t ) =
1� exp[��2=(1� 
2)]

1� exp[��2] ; P ("2t ) =
3� exp[��2=(1� 
2)]

2
:

By using the empirical results of Kim et al. (1998), we get that the persistence of the variance

and the squared residuals are P (�2t ) = 17:560 P ("2t ) = 1:218: Therefore the autoregressive

coeÆcient �
 and the moving average parameter � are �
 = 0:972 and � = :860: Interestingly,

the values � = :860 and � � 
 � � = :112 are very close from ones obtained for a GARCH(1,1)

estimated by a Gaussian QMLE. This con�rms our claim made in the introduction that all the

volatility models describe well the volatility (and squared residuals) dynamics. Indeed, by using

Fiorentini and Sentana's persistence, we obtain that these dynamics are very close.

2.2.6 Temporal aggregation

As we already mentioned, HSV and LSV models are SR-SARV. Meddahi and Renault (1996,

2000) show that this class of models is closed under temporal aggregation, cross-sectional
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aggregation and information reduction. Since HSV(p) are SR-SARV(p), this implies that if

"t is a HSV(p) or LSV(p) at daily frequency for example, then the aggregated process
P5
i=1 "t�i

is a SR-SARV(p) but not a HSV(p) or LSV(p) model. It is of interest to characterize the

assumptions of the HSV and LSV models that are closed under temporal aggregation. Meddahi

and Renault (2000) show that to have a model which is closed under temporal aggregation, one

has to make two assumptions: i) the variance process is a marginalization of a VAR(1); ii) one

has to make semiparametric assumptions on the standardized residual ut, i.e. the conditional

mean and variance are 0 and 1 respectively. The �rst assumption holds for the HSV and LSV

models but not the second one since we assume that ut is i.i.d.; hence, HSV and LSV models are

not closed under temporal aggregation. However, if we relax the i.i.d. assumption, then we will

have the temporal aggregation result. Meddahi (2001-b) calls these models the semiparametric

HSV or LSV models. He shows that semiparametric HSV (and LSV) models are closed under

temporal aggregation (see Section 4).

Diebold (1988) suggested that the aggregated process converges to a Guassian process.

Therefore, we also characterize the asymptotic behavior of the kurtosis of the aggregated process.

Indeed, let "t be a HSV or LSV model without leverage e�ect and consider the process f"(m)
�m g

de�ned by "
(m)
�m �Pm�1

i=0 "tm�i where m is an integer. Then, we show in Section 4 that

Kurt("(m)
�m )� 3 =

1

m
(kurt("t)� 3) +

6

a20

pX
i=1

a2i

i

(1� 
i)2

im �m
i +m� 1

m2
: (2.37)

Moreover, when m �! +1, we have

Kurt("(m)
�m )� 3 =

1

m

 
(kurt("t)� 3) +

6

a20

pX
i=1

a2i

i

(1� 
i)2

!
+ o(

1

m
): (2.38)

The equation (2.37) means that the excess kurtosis of the aggregated process depends on two

terms. The �rst one is the excess kurtosis of the non aggregated process while the second

one is due to the time-varying volatility. This means that the volatility reduces the speed of

convergence of the aggregated process to Gaussianity. Since the volatility persistence decreases

when one aggregates the process, one may also expect the same result for the kurtosis, i.e.

(2.37) is a nonincreasing function of m. It turns out that this is not the case. It is easy to

show that for some parameters fai; i 2 Ng and 
, (2.37) starts by increasing and then decreases.

In fact, Nelson (1996) already shows in a di�erent context that for some examples, reducing

the information may increase the kurtosis. It turns out that temporal aggregation reduces the

information set. Consider now the kurtosis asymptotic behavior of the aggregated process. (2.38)

says that the convergence arises at the speed 1=m. Moreover, the term governing the leading

coeÆcient is also a combination of two terms due to the excess kurtosis and the time-varying

volatility e�ect of the high frequency process. Note that the second e�ect is due to both ai and

�i. In particular, if some eigenfunction of high order (thus 
i is small) has an important weight

(ai is big), then this will reduce the speed of convergence to Gaussianity.
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2.3 The Hermite and Laguerre SV models in continuous time

2.3.1 The model and exact discretization

De�nition 2.3. Continuous time Hermite and Laguerre SV models: A continuous time

process fytg is called a Hermite (resp Laguerre) SV model of order p, HSV(p) (resp LSV(p)),

with an underlying state variable process fftg if:

dyt = �t

�q
1� �2dW

(1)
t + �dW

(2)
t

�
with �2t =

pX
i=0

aiEi(ft) where (2.39)

ft is the Ornstein-Uhlenbeck (resp square-root) process de�ned by (2.13) (resp (2.16)), Ei the

Hermite (resp Laguerre) polynomials de�ned by (2.6) (resp (2.17)), and
Pp
i=0 a

2
i <1:

In other words, HSV and LSV continuous time models are de�ned as in discrete time,

that is the variance process is a linear combination of the Hermite and Laguerre polynomials

respectively.20 One needs to impose the same positivity assumption as in the discrete time case.

Unconditional and conditional moments of these models are derived in Meddahi (2001-a). Since

the semiparametric discrete time model are closed under temporal aggregation, this suggests

that exact discretization of continuous time HSV(p) (resp LSV(p)) is a semiparametric HSV(p)

(resp LSV(p)). It is established in the following proposition by Meddahi (2001-b):

Proposition 2.1 Exact discretization. Consider fytg a continuous time HSV(p) (resp

LSV(p)) model where fftg is the underlying state variable. Then, for any sampling interval

h, the associated discrete time process "
(h)
th � yth � y(t�1)h is a semiparametric HSV(p) (resp

LSV(p)) model w.r.t. J
(h)
th = �("

(h)
�h ; f�h; � � t) with the same underlying state variable process,

i.e. f
(h)
�h = f�h. More precisely, we have:

�
(h)2
(t�1) � V ar["

(h)
th j J (h)

(t�1)h] = a0hE0(f
(h)
(t�1)h) +

pX
i=1

ai(1� exp(�kih))
ki

Ei(f
(h)
(t�1)h): (2.40)

2.3.2 Variance of the variance

In their �ltering work, Nelson and Foster (1994) highlighted the importance of the variance of

the variance. In particular, they show that if one considers a �lter of the volatility process,

which is always what we do in practice since we do not know the true data generating process,

then the variance of the �lter variance process has to be the same as the variance of the true

variance to achieve optimality. Moreover, if this is not the case, the �lter may be very worse.

It turns out that for the popular SV models, namely lognormal, GARCH and square-root, the

variance of the variance is �xed, quadratic in the �rst two cases and linear in the last one.21

Therefore, Nelson and Foster (1994) criticize these models and recommend the development of

volatility models where the variance of the variance is 
exible such that the data will tell us

what is the variance of the variance.

20Observe that there is not a problem of the existence of a solution of yt since: i) the existence of ft and, hence,

�t hold; ii) yt = y0 +
R t
0
�u

hp
1� �2dW

(1)
u + �dW

(2)
u

i
.

21Observe that when the variance of the variance is quadratic, the log-variance is homoskedastic.
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The CEV model considered by Jones (2000) is 
exible since this process is given by22

d�2t = k(� � �2t )dt+ �� t dWt;
1

2
<  :

When  = 1=2 (resp  = 1), the CEV process coincides with the square-root (resp GARCH)

one. However, it is easy to show that for  < 1, the tails of the unconditional distribution of

the �2t are a decreasing function of  . Therefore, one will prefer empirically  = :5 or  > 1.23

In Gallant, Hsu and Tauchen (1999) and Chernov et al. (2001), the variance process is given by

�2t = exp(a+ ft) where dft = k(� � ft)dt+ �ftdWt:

Therefore, by using Ito's Lemma, one gets that the variance of the variance is given by

�2(�2t )
2[log(�2t )]

2: Thus, this is also a �xed function.24 Therefore, it is of interest to �nd volatility

models where the variance of the variance is a power function, �2 t , with  < 1.

Let us now consider the Hermite and the Laguerre SV models. Observe that while our results

here are for the continuous time models, the same ones hold in discrete time. For the simplicity

of the exposition, consider the stochastic di�erential equation of the monomials f it with i > 1.

Then, by using again Ito's Lemma, one gets that the variance of f it is given respectively by

Var of (f it) = 2ki2(f it )
2�i where �i = 1� 1

i
; and

Var of (f it)t = 2ki2(f it )
2�i where �i = 1� 1

2i
:

Observe that in both cases, �i is an increasing function and that the limit of Var of (f it) when i!
+1 is 2. Thus, since the Hermite and Laguerre polynomials of order n are linear combination

of the monomials f it , i � n, the variance of the variance of these polynomials is a smooth

function of the variance. Moreover, by increasing n, one increases the variance of the variance.

At the limit, i.e. when n ! +1, the variance of the variance is quadratic as in GARCH and

log-Normal SV cases. In conclusion, the variance of the variance of a Hermite or Laguerre SV

model is (almost) a power function, �2 t , with  smaller than one and this power increases with

p and goes to one when p! +1.

2.3.3 Option pricing

An important advantage of aÆne models (Heston, 1993; DuÆe, Pan and Singleton, 2000) is that

closed form option pricing formulae are available. This is not the case for the other models.25

In this paper, we do not address this issue. However, we think that this is possible in the

eigenfunctions framework. The main reason is that prices of �nancial derivatives are usually

characterized by di�erential equation (see, e.g., DuÆe, 1992) while the eigenfunctions were

developed for solving non-linear di�erential equations. In general, the solution are characterized

22Meddahi and Renault (1996, 2000) consider the CEV model with  � 1.
23By using a Bayesian method, Jones (2000) estimates that  is around 1.5. Note that in CEV processes with

 > 1, E[(�2t )
r] is not �nite for r > 2 � 1. Thus, this is also the case for E[�2rt ] where "t is, say, a daily return.

24Observe that while the variance of the variance in CEV process with  > 1 is greather than the one in Gallant,
Hsu and Tauchen (1999), the tails of the unconditional distribution of the latter are fatter than the former.

25However, this is the case for the Levy SV model of Barndor�-Nielsen and Shephard (2001).
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as a linear combination, in general in�nite, of the eigenfunctions. Indeed, Davydov and Linetsky

(2000) consider this approach for pricing options on scalar di�usions. Moreover, an application

of the eigenfunctions considered in Wong (1964) was computing the distributions (or moments)

of functional forms of Markov process. In particular, Wong (1964) considers functionals of the

form

Y (t) =

Z t

0
f [X(�)]d�

where X(�) is a scalar stationary Markov process, with special attention to the square-root

process.26

Another potential interesting property of the eigenfunctions for option pricing is the

following. We consider the aÆne case since this is the only example were there are closed

form option pricing formulae. Let the variance process under the Objective and Risk neutral

probabilities given respectively by

d�2t = k(� � �2t )dt+ ��tdW
(2)
t and

d�2t = k�(�� � �2t )dt+ ��tdW
(2)�
t :

It turns out that the risk premia form is speci�ed in Heston (1993) such that

k� = k + � and �� =
k�

k + �

where � is the main parameter in the risk premia speci�cation. In this case, the � and ��

parameters that characterize the Laguerre polynomials (2.15) coincide since

�� =
2k���

�2
� 1 =

2k�

�2
� 1 = �:

As a consequence, the eigenfunctions are the same in both Objective and Risk neutral

probabilities. Moreover, the marginal distributions of the state variables ft and f�t de�ned

in (2.15) are the same.27 Therefore, making similar assumptions about the eigenfunctions and

the state variable ft in our Eigenfunction SV model may be useful for option pricing purposes.

3 Eigenfunctions of the conditional expectation and

in�nitesimal generator operators

In this section, we recall some de�nitions and properties of the eigenfunctions of a conditional

expectation operator in the discrete time case as well as the eigenfunctions of the in�nitesimal

generator of di�usions in the continuous time case. We give examples in both cases.

26Finally, let us observe that Lars Hansen presented in his lectures at CIRANO conference on \Financial
Mathematics and Econometrics" in June 2001 a work in progress with Jos�e Scheinkman, where they de�ne the
pricing operator and study its spectral properties, that is the eigenfunctions of this operator.

27The marginal distribution of �2t is 
(�+1; �=(�+1)) under the Objective probability and 
(�+1; ��=(�+1))
under the Risk neutral one. Thus, the skewness and kurtosis of �2t is the same in both probabilities. This is
probably a restrictive assumption. Note however that this is not the case for the aggregated returns because the
aggregation incorporates the mean reverting parameter (k or k�); see Meddahi (2001-a).
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3.1 The general theory

Let fftg be a stationary Markovian discrete time process. Consider the following problem: is

there a function �(ft), square-integrable, i.e. E[�(ft)
2] <1, such that

E[�(ft+1) j ft] = ��(ft) (3.1)

where � is a real number? The solutions � of (3.1) are called the eigenfunctions of the conditional

expectation operator associated to the process fftg and the reals � are called the eigenvalues.

The set of eigenvalues is called the spectrum of the operator.28

Indeed, as in the linear algebra case, the existence of real eigenfunctions and real eigenvalues

solutions of (3.1) is not always ensured. However, complex ones are. In the following we

will assume that the solutions are reals. It is well known in the linear algebra case, that

this is ensured when the considered matrix is symmetric. The counterpart assumption in the

conditional expectation operator case is that the state variable fftg is time-reversible, i.e. the

conditional distributions of ft given ft�1 and of ft given ft+1 are the same.29 Therefore we

make the following assumption which ensures that the eigenfunctions are real functions and the

eigenvalues are real numbers:

Assumption A1. The stationary Markovian process fftg is time-reversible.

Now, we will consider some interesting properties of the eigenfunctions. It is clear that

if a function � is an eigenfunction associated to an eigenvalue �, then any non-zero function

proportional to � is also an eigenfunction associated to the same eigenvalue �. Therefore we

make a normalization assumption by considering the eigenfunction with E[�(ft)
2] = 1. Observe

that an obvious solution of (3.1) is any non-zero constant function associated to the eigenvalue

one. This eigenvalue will be denoted �0 and the corresponding eigenfunction E0(ft) � 1.

Since the eigenvalues are reals and that any eigenfunction is a square-integrable function of

the stationary process fftg, (3.1) means that any eigenfunction �(ft) (not associated to �0) is an

AR(1) process. However, in general, this process is an heteroskedastic one. The autoregression

dynamics and the stationarity assumption mean that any eigenvalue � 6= �0 is smaller than one

in absolute value. We will now make an assumption on the set of the eigenvalues (spectrum):

Assumption A2. The spectrum of the conditional expectation operator is discrete and denoted

f�i; i 2 Ng with 1 = �0 >j �1 j>j �2 j> ::: >j �i j>j �i+1 j :::; the corresponding eigenfunctions
are denoted Ei(ft), i 2 N.

A suÆcient condition to ensure A2 is that the conditional expectation operator is compact.

Consider two di�erent eigenvalues �i and �j with corresponding eigenfunctions Ei(ft) and

Ej(ft). Then, these two functions are orthogonal, i.e.

E[Ei(ft)Ej(ft)] = 0: (3.2)

28Observe that this terminology is close to the one used in the linear algebra case, when one considers the
eigenvector-eigenvalue problem.

29Recall that ft is assumed to be Markovian. Therefore, the conditional distribution of ft given ft�1 (resp ft+1)
is also the conditional distribution of ft given ff� ; � � t� 1g (resp ff� ; � � t+ 1g).
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As a consequence, any eigenfunction associated to an eigenvalue di�erent from �0 is centered:

E[Ei(ft)] = 0: (3.3)

Consider now a square-integrable function g, i.e. E[g(ft)
2] < 1. Then we have the important

following result:

g(ft) =
1X
i=0

aiEi(ft) in mean� square where ai = E[g(ft)Ei(ft)]: (3.4)

In other words, any square-integrable function may be written as a linear combination of the

eigenfunctions. Observe that
1X
i=0

a2i = E[g(ft)
2] <1: (3.5)

Therefore, g(ft) is the limit in mean-square of
Pp
i=0 aiEi(ft) when p! +1.

Let us now consider the continuous time case. Let fftg be the stationary scalar di�usion

characterized by

dft = �(ft) + �(ft)dWt; (3.6)

where Wt is a standard Brownian process. Let A be the in�nitesimal generator operator, i.e.,

A�(ft) � �(ft)�
0(ft) +

�2(ft)

2
�
00
(ft) (3.7)

where �(ft) is square-integrable function and twice di�erentiable. A function � is called an

eigenfunction of the in�nitesimal generator A with a corresponding eigenvalue �Æ if

A�(ft) = �Æ�(ft): (3.8)

It turns out that the properties of the eigenfunctions and spectrum of the in�nitesimal generator

operator are similar to those of a conditional expectation operator. In particular:

i) When fftg is time-reversible, the eigenfunctions and eigenvalues are reals. Hansen,

Scheinkman and Touzi (1998) show that under appropriate boundary protocol, stationary scalar

di�usions are time-reversible.30 So we make the time-reversibility assumption:

Assumption A1'. The process stationary process fftg is time reversible.

ii) The non-zero constant functions are eigenfunctions associated to the eigenvalue zero

(denoted Æ0).

iii) The spectrum of the A is not necessarily discrete. However, when A is compact, it is

discrete. Therefore, we assume in the sequel that the spectrum is discrete:

Assumption A2'. The spectrum of the in�nitesimal generator operator, A, of fftg is discrete
and denoted f�Æi; i 2 Ng with Æ0 = 0 and Æ0 < Æ1 < Æ2 < ::: < Æi < Æi+1:::; the corresponding

eigenfunctions are denoted Ei(ft), i 2 N.

iv) Two eigenfunctions associated to two di�erent eigenvalues are orthogonal, i.e. (3.2) holds.

As a consequence, any non-constant eigenfunction is centered, i.e. (3.3). Finally, any square

integrable function g(ft) can be decomposed in terms of eigenfunctions, i.e. (3.4) and (3.5).

30See Florens, Renault and Touzi (1998) for a discussion of the observable implications of reversibility.
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Finally, there is the following important result:

8h > 0; E[Ei(ft+h) j ft] = exp(�Æih)Ei(ft): (3.9)

As a consequence, each eigenfunction Ei of A is also an eigenfunction of the conditional

expectation operator associated to a sample of the continuous time process fft; t 2 IR+g observed
at discrete time, say fth; t 2 N. The corresponding eigenvalue �i(h) is

31

�i(h) = exp(�Æih): (3.10)

Before giving examples, let us make three remarks. First of all, the spectrum of an operator

may be continuous or mixed (i.e. discrete and continuous). The GARCH di�usion of Nelson

(1990-b) is a particular case that we will consider. All the results developed before are still valid.

The only di�erence is that in the expansion result (3.4), one has to consider an integral instead

of a sum. Second, while we consider a univariate process ft, the same theory holds for the

multivariate case. The main diÆculty is the time reversibility assumption. Time reversibility

is a restrictive assumption in multivariate case. A suÆcient condition is that the multivariate

Markovian process is a function of independent univariate Markovian processes. This is the case

of most models considered in the literature; see Hansen and Scheinkman (1995), Florens et al.

(1998) and Chen et al. (2000). Finally, we implicitly assume that for a given eigenvalue, all

the related eigenfunctions are proportional. If this assumption does not hold, we say that the

eigenvalue has a multiple order. We exclude this in our setting since the assumption holds in all

the considered examples.

3.2 Examples

Now we consider some examples in the discrete and continuous times. We already considered

two eigenfunctions examples, that is Hermite and Laguerre polynomials in both discrete and

continuous time. There are many other examples where the eigenfunctions are orthonormal

polynomials.32 The �rst reference that derives some of them in continuous time is probablyWong

(1964). An excellent reference of the use of orthonormal polynomials for stochastic processes

purposes is Schoutens (2000). We will follow these authors in the construction of eigenfunctions.

Therefore, we �rst start in continuous time since the eigenfunctions of the in�nitesimal generator

are characterized by the di�erential equation (3.8).

3.2.1 Examples in continuous time

Let ft the stationary solution of the following stochastic di�erential equation

dft = (c+ dft)dt+
q
af2t + bft + c dWt: (3.11)

Then we have �ve di�erent cases of interest that correspond to the behavior of the roots of

af2 + bf + c = 0: (3.12)

31As a consequence, any eigenvalue of the conditional expectation operator is positive; see Florens et al. (1998).
32For references on orthogonal polynomials, see Chihara (1978) and Szego (1975).
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i) If a = b = 0 (and c 6= 0), then (3.12) has no root and this example corresponds to

the Ornstein-Uhlenbeck process. Therefore, the eigenfunctions are the Hermites polynomials,

Hi; i 2N, while the eigenvalues are �i; i 2 N. The support of ft is IR, the marginal distribution

is normal and the conditional distribution of ft given ft�h is also normal.

ii) If a = 0 and b 6= 0, then (3.12) has one real root, say f�. Therefore, to ensure the

nonnegativity of the di�usion term, we have to exclude ] �1; f�[ or ]f�;1[ depending on the

sign of b. After an aÆne transformation, one may get the following di�usion

dft = k(� � ft)dt+ �
p
ft dWt:

In other words, this corresponds to the square-root process considered by Feller (1951) and

popularized in Finance by Cox, Ingersoll and Ross (1984). Observe that the aÆne model of

DuÆe and Kan (1996) is also a special example of this case. Therefore, the eigenfunctions are

the Laguerre polynomials, fL(�)
i ; i 2 Ng where � = 2k�=�2 � 1, while the eigenvalues are

fki; i 2 Ng. The support of ft is [0;1[, the marginal distribution is 
(� + 1; �=(� + 1)) while

the conditional distribution is chi-square.

Consider now the case where a 6= 0. There are three cases: the roots are real and di�erent

(iii), they are real and equal (iv) and they are complex and conjugate (v).

iii) If a 6= 0 and the roots of (3.12) are real and di�erent (when b2 � 4ac > 0). Then, an

aÆne transformation of ft gives

dft =
1

2
[(� + 1)(1 � ft)� (�+ 1)(1 + ft)]dt+

q
1� f2t dWt:

This process is known as the Jacobi di�usion (see Karlin and Taylor, page 335). The support of

ft is [�1; 1] and the marginal distribution is Beta. The eigenfunctions are the Jacobi polynomials

P
(�;�)
i (see, e.g., Szego, 1975) while the corresponding eigenvalues are i(i+ �+ � + 1).

iv) If a 6= 0 and the roots of (3.12) are equal (when b2 � 4ac = 0). Then, an aÆne

transformation of ft gives

dft = k(� � ft)dt+ �ft dWt:

In other words, this is the GARCH di�usion process considered by Nelson (1990-b) and

introduced the �rst time by Wong (1964). The support of ft is [0;+1[ while the marginal

distribution is inverse Gamma (see Wong, 1964). The polynomial solutions of

k(� � f)�0(f) +
�2f2

2
�00(f) = �Æ�(f)

are known as the Bessel polynomials (see Chihara, 1978, page 182). However, there exists an

integer i0 such that for all i > i0, the Bessel polynomials are not square integrable with respect to

the stationary marginal density of ft. As a consequence, the Bessel polynomials of order higher

than i0 are not in the domain of the in�nitesimal generator and, hence, are not eigenfunctions.

Fortunately, Wong (1964) derives the eigenfunctions of the di�usion in�nitesimal generator by

using results on Sturm-Liouville equations. In particular, he shows that the spectrum is mixed

or continuous and that the eigenfunctions are hypergeometric functions.33

33Note that Hermite, Laguerre and Jacobi polynomials are particular hypergeometric functions.
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v) If a 6= 0 and the roots of (3.12) are complex and conjugate (when b2 � 4ac < 0). Then,

the solutions of the di�erential equations are known as the Romanowski polynomials. However,

as for the previous case, higher order moments are not de�ned. Therefore, the polynomials are

not eigenfunctions.34 Note that in a particular case, the marginal distribution of ft is a Student.

Note that Wong (1964) shows that any di�usion which eigenfunctions are only polynomials

is necessarily one of the cases i), ii) or iii), i.e. Ornstein-Uhlenbeck, square-root or Jacobi. In

addition to all these examples, there are others where the eigenfunctions are not polynomials.

Some of them are considered in Kessler and Sorensen (1999). In particular, they consider these

two examples:

dft = �� tan(ft)dt+ dWt; � � 1

2
and

dft =

�
(�1 � �2) cosh(

ft
2
� (�1 + �2) sinh(

ft
2
))

�
cosh(

ft
2
)dt+ 2 cosh(

ft
2
)dWt; �1 > 0; �2 > 0:

In the �rst case, the spectrum is fi(�+ i=2); i 2 Ng with corresponding eigenfunctions given by

�i(f) = C�i (sin(f)) where C
�
i is a Gegenbauer polynomial of order i. In this case, the support

is ] � �=2; �=2[ and the marginal density is proportional to cos(f)2�. In the second example,

the spectrum is f(i=2)(i + 1 + �1 + �2); i 2 Ng with corresponding eigenfunctions given by

�i(f) = P
(�1;�2)
i (tanh(f=2)) where P

(�1;�2)
i is the Jacobi polynomial of order i. In this case, the

marginal distribution is the generalized logistic distribution with density

B(�1 + 1; �2 + 1)e(�1+1)x(1 + ex)�1+�2+2

where B(:; :) denotes the Beta function given by B(x; y) = �(x)�(y)=�(x+ y).

3.2.2 Examples in discrete time

As we already mentioned, any discrete sample of a di�usion process is an additional example.

In particular, the eigenfunctions of the conditional expectation operator coincide with ones of

the in�nitesimal generator while the eigenvalues are related by (3.10). In addition to these

examples, we can mention some others where the eigenfunctions are polynomials. In particular

(see Schoutens, 2000), the eigenfunctions may be the Meixner, Krawtchouk or the Charlier

polynomials. In these case, the marginal distribution of ft is Pascal, Binomial or Poisson

respectively. Observe that the support of the random variable f is discrete in these cases.

Recently, Darolles, Gouri�eroux and Jasiak (2001) introduced a large class of processes in

discrete time called compound autoregressive (CAR). This class is characterized by an aÆne

function of the conditional log-Laplace transform. This property is probably the main advantage

of the square-root process. Therefore, CAR models share this property. When the process is

time-reversible, these authors characterize the eigenfunctions of the conditional expectation

operator and show that they are polynomials. Special examples are the square-root and the

three discrete valued cases (Pascal, Binomial and Poisson).

34We have not found references that characterize the eigenfunctions and the spectrum.
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4 The Eigenfunctions Stochastic Volatility models

In this section, we introduce the general approach of modeling volatility by eigenfunctions. We

start by introducing the discrete time volatility model and give additional examples other than

the Hermite and Laguerre ones. After that, we introduce the continuous time volatility model

and give some additional examples. Then we consider the multifactor approach. In the last

subsection, we relate our approach to the literature. More precisely, we give several examples of

the literature that implicitly consider particular eigenfunctions models. Moreover, we consider

a popular continuous time volatility model, namely the GARCH di�usion model of Nelson

(1990-b), which is not included in the general theory. However, we show how our approach can

be extended to incorporate this model.

4.1 The discrete time Eigenfunction Stochastic Volatility model

4.1.1 The model

De�nition 4.1. Discrete time Eigenfunction SV model: A process f"tg is called an

Eigenfunction SV model of order p, ESV(P), with an underlying Markovian state variable fftg if:

"t = �t�1ut; with (4.1)

�2t�1 =
pX
i=0

aiEi(ft�1) where (4.2)

pX
i=0

a2i <1; (4.3)

ut is independent from ff� ; u� ; � � t�1g, identically distributed with zero mean and unit variance

and Ei(ft), i 2 N, are the eigenfunction (with corresponding eigenvalues �i) of the conditional

expectation operator associated to the state variable ft given fu� ; f� ; � � t� 1g, i.e.

E[Ei(ft) j u� ; f� ; � � t� 1] = �iEi(ft�1): (4.4)

In other words, we say that a process f"tg is an Eigenfunction SV model of order p, ESV(p),

if its conditional variance process given ff� ; u� ; � � t � 1g is a linear combination of the

eigenfunctions of the conditional expectation operator associated to the state variable ft. This

linear combination is in terms of the constant and the p �rst eigenfunctions. Observe that

in the previous de�nition, the conditional expectation operator is de�ned given the past of ft

and ut which is di�erent from the previous section. However, in the examples considered in

the literature and ours, the process futg does not cause fftg. More precisely, we have for any

square-integrable function g(ft):

E[g(ft) j f� ; u� ; � � t� 1] = E[g(ft) j f� ; � � t� 1] = E[g(ft) j ft�1]:

The �rst equality is the non-causality assumption while the second one is due to the Markovianity

of ft. When p is in�nite, (4.3) means that the conditional variance of "t is the limit in

mean-square of
P~p
i=0 aiEi(ft�1) when ~p ! +1. Observe also that we do not make restrictive
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assumptions on ut. In particular, the distribution of ut may be a standardized Student or

any other distribution with zero mean and unit variance. Therefore, some higher moments of

ut may be in�nite. However, we will assume that the fourth moment of ut is �nite when we

will consider some properties of the process of "t like the covariance structure of their square

(heteroskedasticity). Note also that we do not preclude leverage e�ect (Black, 1976; Nelson,

1991), i.e., the random variables ut and ft may be correlated.

De�nition 4.2. Terminology: Let f"tg an ESV(p) model with an underlying Markovian state

variable fftg with corresponding eigenfunction Ei(ft), i 2 N. If the name of the eigenfunction is

known, for instance Hermite polynomials, then we give the same name for the volatility model,

for instance Hermite SV model, HSV(p).

This means that, for instance, when the eigenfunctions are the Jacobi polynomials, we say

that "t is the Jacobi SV model of order p, JSV(p).

4.1.2 Moments

We now compute the moments of the ESV model. We compute the �rst four moments, the

covariance structures of the squared residual and conditional moment restrictions. We start by

computing the marginal moments. Observe that most of the comments made in the HSV and

LSV models hold for the ESV ones. Therefore, we will not make then again.

Proposition 4.1 Marginal moments of ESV models. Consider f"t; t 2 Ng a discrete-time
ESV(p) model. Then the mean and variance of "t are given by:

E["t] = 0; V ar["2t ] = a0: (4.5)

When the fourth moment of ut is �nite, the fourth moment and kurtosis of "t are given by

E["4t ] = E[u4t ]
pX
i=0

a2i ; Kurt["t] = Kurt[ut]

 
1 +

Pp
i=1 a

2
i

a20

!
: (4.6)

Proposition 4.2 Covariance structures of ESV models. Consider f"t; t 2 Ng a discrete-

time ESV(p) model. Assume that the fourth moment of ut is �nite and that there is no leverage

e�ect, i.e. ut and ft are independent. Then, 8j > 0, we have:

Cov["2t ; "
2
t�j ] =

pX
i=1

a2i�
j
i : (4.7)

Observe that we assume that there is no leverage e�ect. However, if one assume there is, one

has to specify the dependence between ft and ut and, then, take into account this speci�cation

in the computation of Cov["2t ; "
2
t�j ]. For instance, consider the Hermite SV case and assume the

usual leverage e�ect speci�cation, i.e.

(ut; vt) i:i:d: N
  

0
0

!
;

"
1 �
� 1

#!
(4.8)

where vt is the standardized innovation of ft, i.e.

ft = 
ft�1 +
q
1� 
2 vt: (4.9)

Then, we can compute explicitly the covariance structure of the squared process "2t .
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Proposition 4.3 Covariance structures of HSV models under leverage e�ect.

Consider f"t; t 2 Ng a discrete-time HSV(p) model and assume that the leverage e�ect

speci�cation is given by (4.8). Then, 8j > 0:

Cov["2t ; "
2
t�j ] = (1� �2)

pX
i=1

a2i 

ij + �2a0a2(1� 
2)
2

p
2+

�2
pX
i=1

ai

ij
�
(1� 
2)

q
(i� 1)i
�2ai�2 + (1 + 2i(1 � 
2))ai + (1� 
2)

q
(i+ 1)(i + 2)
2ai+2

�
(4.10)

with the convention that ai = 0 if i < 0 or i > p.

When there is no leverage e�ect, i.e. � = 0, the �rst element in the right part of (4.10)

corresponds exactly to (4.7). Therefore the last two terms in the right part of (4.10) are due to

the leverage e�ect. Following Meddahi and Renault (1996, 2000), we can also characterize the

leverage e�ect in terms of observable restrictions. More precisely, these authors show that the

presence of leverage e�ect implies that Cov["t; "
2
t+1] is nonzero. As usual in volatility models,

one has to derive the model on �t in order to compute moments that involve the standard

deviation �t and not the variance �2t . This is feasible in exponential models (e.g. EGARCH and

log-normal SV) but not in GARCH. This is also our case. Hence, if one has the decomposition

of �t in terms of eigenfunctions (see Section 2), then one can compute Cov["t; "
2
t+1].

Let us now consider the dynamics of the squared residual process. The variance de�nition

means that

E["2t j "� ; f� ; � � t� 1] =
pX
i=0

aiEi(ft�1): (4.11)

Since each eigenfunction is an AR(1), (4.11) implies, under some condition, that "2t is an

ARMA(p,p). In fact, we have a more restricted observable implications:

Proposition 4.4 Observable conditional moments restrictions of ESV models.

Consider f"t; t 2 Ng a discrete-time HSV(p) model. Then we have:

E["t j "� ; � � t� 1] = 0: (4.12)

If p is �nite, then we have:

E[
pY
i=1

(1� �iL)["
2
t � a0] j "� ; � � t� p� 1] = 0: (4.13)

As a consequence, if the fourth moment of "t is �nite, "2t is an ARMA(p,p) model with

autoregressive coeÆcients �1, �2,...,�p.

When the fourth moment of "t is �nite, then (4.13) implies that the process wt de�ned by

wt �
pY
i=1

(1� 
iL)["2t � a0] (4.14)

is a weak moving average of order p, MA(p), and, hence, "2t is a weak ARMA(p,p) and "t is a

weak GARCH(p,p).
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4.1.3 Temporal aggregation and asymptotic behavior of the kurtosis of aggregated

process

In order to study the temporal aggregation of the Eigenfunction SV models, Meddahi (2001-

b) relaxes the main restrictive assumption of ESV models that is not closed under temporal

aggregation, i.e. the i.i.d. assumption on ut. Then he shows that semiparametric ESV(p) class

of models is closed under temporal aggregation.

De�nition 4.3. Semiparametric ESV model: A stationary squared integrable process f"tg
is called a semiparametric ESV(p) w.r.t. an increasing �ltration Jt with an underlying state

variable process fftg if:

i) the process "t is adapted w.r.t. Jt, that is It � Jt where It = �("� ; � � t);

ii) "t is a martingale di�erence sequence w.r.t. Jt�1, i.e. E["t j Jt�1] = 0;

iii) the conditional variance process �2t�1 of "t given Jt�1 is given by

�2t�1 =
pX
i=0

aiEi(ft�1) where (4.15)

where the sequence ai is such that
Pp
i=0 a

2
i < 1 and Ei(ft), i 2 N, are the eigenfunction

(with corresponding eigenvalues �i) of the conditional expectation operator associated to the

state variable ft given Jt�1, i.e.

E[Ei(ft) j Jt�1] = �iEi(ft�1): (4.16)

Proposition 4.5 Temporal aggregation of semiparametric ESV models

Let "t a semiparametric ESV(p) model w.r.t. an increasing �ltration Jt where fftg is the

underlying state variable process. De�ne for a given integer m and real numbers w1; :::; wm the

process f"(m)
tm ; t 2 Ng by "(m)

tm =
Pm�1
i=0 wi"tm�i. Then f"(m)

tm ; t 2Ng is a semiparametric ESV(p)

model w.r.t. J
(m)
tm = �("

(m)
�m ; f� ; � � t) with the same underlying state variable process, i.e.

f
(m)
�m = f�m. The eigenfunctions are the same but the corresponding eigenvalues are �

(m)
i = �mi .

We now derive the fourth moment of the aggregated process and its asymptotic behavior:

Proposition 4.6 Asymptotic behavior of the kurtosis of aggregated process Consider

f"t; t 2 Ng a discrete-time ESV(p) model. Assume that the fourth moment of ut is �nite, the

third moment of ut is zero and that there is no leverage e�ect. Let m be an integer and consider

the aggregated process f"(m)
�m g de�ned by "(m)

�m �Pm�1
i=0 "tm�i. Then the kurtosis of "

(m)
�m is given by

Kurt("(m)
�m )� 3 =

1

m
(kurt("t)� 3) +

6

a20

pX
i=1

a2i
�i

(1� �i)2
�mi �m�i +m� 1

m2
: (4.17)

Moreover, when m �! +1, we have

Kurt("(m)
�m )� 3 =

1

m

 
(kurt("t)� 3) +

6

a20

pX
i=1

a2i
�i

(1� �i)2

!
+ o(

1

m
): (4.18)
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4.2 The continuous time Eigenfunction Stochastic Volatility models

De�nition 4.3. Continuous time ESV model: A continuous time process fytg is called an

Eigenfunction SV model of order p, ESV(p), with an underlying di�usion process fftg if:

dyt = mdt+ �t [
q
1� �2dW

(1)
t + �dW

(2)
t ]; with (4.19)

�2t =
pX
i=0

aiEi(ft); where (4.20)

pX
i=0

a2i <1; (4.21)

Ei(ft) are the eigenfunctions (with corresponding eigenvalues (�Æi)) of the in�nitesimal

generator associated to the stationary process ft characterized by

dft = �(ft) + �(ft)dW
(2)
t ; (4.22)

where W
(1)
t and W

(2)
t are two independent standard Brownian processes.

Again, as for the discrete time ESV model, we say that a continuous time SV model is

an ESV(p) one if the instantaneous variance process �2t is a linear combination of the �rst

p eigenfunctions of the in�nitesimal generator associated to the di�usion process ft. All the

remarks made in the discrete time SV model hold here. Observe that here we specify explicitly

the leverage e�ect via �. In the following section, we show how this model may be extended

to incorporate time-varying leverage e�ect. The last section also considers a time-varying drift

model where the drift is also a linear combination of the eigenfunctions Ei(ft). Finally, we adopt

the same terminology as in discrete time. For instance, when the eigenfunctions Ei(ft) are the

Jacobi polynomials, we say that yt is a Jacobi SV model.

Unconditional and conditional moments of these models are derived in Meddahi (2001-a). As

for Hermite and Laguerre SV models, exact discretization of ESVmodels leads to semiparametric

ESV models (see Meddahi, 2001-b):

Proposition 4.7 Exact discretization. Consider fytg a continuous time ESV(p) model

where fftg is the underlying state variable. Then, for any sampling interval h, the associated

discrete time process "
(h)
th � yth � y(t�1)h is a semiparametric ESV(p) model w.r.t. J

(h)
th =

�("
(h)
�h ; f�h; � � t) with the same underlying state variable process, i.e. f

(h)
�h = f�h. More

precisely, we have:

�
(h)2
(t�1) � V ar["

(h)
th j J (h)

(t�1)h] = a0hE0(f
(h)
(t�1)h) +

pX
i=1

ai(1� exp(�Æih))
Æi

Ei(f
(h)
(t�1)h): (4.23)

4.3 Multifactor model

Instead of specifying that the variance process depends on one factor, we can assume that it

depends on several ones. For simplicity, we consider the two factor case, i.e. we assume that

�2t = F (f1;t; f2;t) (4.24)

30



where f1;t and f2;t are two independent stochastic processes35 characterized by the SDE

dfi;t = �i(fi;t)dt+ �i(fi;t)dWi;t: (4.25)

Therefore, to specify the variance process, one has to de�ne the function F (:; :). The literature

considers in general additive functions. More precisely, the usual assumption is that

�2t = f1;t + f2;t

where the processes fi;t are aÆne processes while the variance is assumed to be

�2t = exp(f1;t + f2;t)

where the processes fi;t are Ornstein-Uhlenbeck processes.36 It is important to understand

that such speci�cations are considered for simplicity. However, it is not clear that this simple

approach provides models that �t the data.

In contrast, there is a general theory about basis expansion of general function. In particular

if one considers a Taylor expansion of F (:; :), than this says that a general formulation is

�2t =
X

0�i;j�1
ai;jf

i
1;tf

j
2;t:

Again, rather than considering expansion in terms of monomials, we will consider the expansion

in terms of eigenfunctions. More precisely we assume that

�2t =
X

0�i;j�p
ai;jE1;i(f1;t)E2;j(f2;t) where

X
0�i;j�p

a2i;j <1

where E1;i(:) and E2;j are the eigenfunctions of the variables f1;t and f2;t respectively with

corresponding eigenvalues �1;i and �2;j. Observe that we do not assume that the processes

f1;t and f2;t have the same eigenfunctions. In particular, f1;t may be a normalized Ornstein-

Uhlenbeck process while f2;t is a square-root one.
37

This approach has two important advantages. The �rst one is that multiplicative models

are useful for generating fat tails (see Section 2). In particular, they can be interpreted

as subordinated processes which is a usual solution to generate fat tails (Clark, 1973).38

Interestingly, Chernov et al. (2001) found that empirically, multiplicative models outperform

the other ones. The second advantage of our approach is that the dynamics of the variance

process given as a linear combination of the cross product of the eigenfunctions are very simple.

The reason is the following. Consider two independent processes y1;t and y2;t such that

E[yi;t j Jt�1] = �iyi;t�1
35The independence assumption is usually made in the literature. It is not clear if this assumption is supported

by the data.
36In their positive Ornstein-Uhlenbeck SV model, Barndor�-Nielsen and Shephard (2001) consider also

multifactor model where the variance is assumed to be the sum of independent positive processes.
37In a di�erent context, namely terme structure modeling, Ahn, Dittmar, Gallant and Gao (2000) consider a

multifactor model where some factors are Ornstein-Uhlenbeck processes and others are aÆne.
38See Carrasco, Hansen and Chen (1999) for a general study of the impact of time deformation on the dependence

of a process.

31



i.e., each process yi;t is a centered AR(1) process. De�ne yt by yt � y1;ty2;t. Then,

E[yt j Jt�1] = E[y1;t j Jt�1]E[y2;t j Jt�1] = �1y1;t�1�2y2;t�1 = �1�2yt�1;

i.e. yt is a centered AR(1) process with autoregressive coeÆcient equal to �1�2. Therefore, by

applying this result to Ei;j(ft) de�ned by

Ei;j(ft) � E1;i(f1;t)E2;j(f2;t) where ft � (f1;t; f2;t)
0; (4.26)

one gets

E[Ei;j(ft+h) j Jt] = exp(�Æi;jh)Ei;j(ft) where Æi;j = Æ1;i + Æ2;j: (4.27)

In other words, the variance process �2t is a linear combination of centered AR(1) processes.

Observe that

E[Ei;j(ft)Ek;l(ft)] = E[E1;i(f1;t)E1;k(f1;t)]E[E2;j(f2;t)E2;l(f2;t)] = ÆikÆjl:

Hence if (i; j) 6= (k; l), then E[Ei;j(ft)Ek;l(ft)] = 0 while E[Ei;j(ft)Ei;j(ft)] = 1, i.e. Ei;j are

orthogonal and their variance is one. As a consequence, the functions Ei;j are the eigenfunctions

of the conditional expectation operator associated to the state variable ft. Hence, all the results

provided in the previous sections still hold.39

4.4 Related literature

In this section, we will review the literature related to our approach. Consider the eigenfunctions

approach for time series modeling. As we already mentioned, this approach is pioneered in

the econometric and �nancial literature by Hansen and Scheinkman (1995). This paper deals

with identi�cation of di�usion processes through the their in�nitesimal generator and derives

observable moment restrictions based on both the marginal and conditional distributions of

the di�usion. Then, Hansen, Scheinkman and Touzi (1997) consider the identi�cation of a

scalar di�usion through the �rst eigenfunction of the in�nitesimal generator. After these

two papers, Chen, Hansen and Scheinkman (1998), Darolles, Florens and Gouri�eroux (1998)

and Darolles, Florens and Renault (1998), highlighted the importance of the eigenfunctions

autoregressive dynamics for time series modeling purposes. In particular the nonlinear principal

components terminology appears in these papers. While Darolles, Florens and Renault (1998)

gives a condition ensuring that the spectrum of the conditional expectation operator is discrete,

Chen, Hansen and Scheinkman (1998) and Darolles, Florens and Gouri�eroux (1998) consider

the nonparametric extraction of the �rst eigenfunction. Besides, Chen, Hansen and Scheinkman

(2000) consider a new approach for continuous time modeling by specifying the marginal

distribution and the di�usion (matrix) term. This approach is very appealing since economists

are in general mostly concerned about the long run, i.e. the marginal distribution. In this setup,

Chen, Hansen and Scheinkman (2000) derives also the principal components. As mentioned in

the introduction, our work was motivated by these papers. However we consider a parametric

39See Chen, Hansen and Scheinkman (2000) for a more general approach of principal components modeling in
the multivariate case.
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model and SV framework. Finally, Kessler and Sorensen (1999) consider the estimation of

various univariate scalar di�usion by using the eigenfunctions of the in�nitesimal generator of

the di�usion. The estimation is based on the estimating functions method.

An important advantage of the eigenfunction approach is that the dynamics of the state

variable driving the volatility process are not related to the relationship between these two

variables. Therefore we reduce the link between the marginal and conditional distributions

of the returns. This is in line with the approach of Chen, Hansen and Scheinkman (2000).

Barndor�-Nielsen and Shephard (2001) also consider a continuous time SV model where the

process driving the volatility process is a positive Levy process that has this nice feature.

We will now review the literature in both volatility in interest rates modeling that implicitly

consider some particular eigenfunctions models. We already show that the lognormal and aÆne

models are particular example of our approach. Some papers consider that the variance process

is the square of a Gaussian AR(1) process. This is the case of Robinson and Za�aroni (1998) in

discrete time and Stein and Stein (1991) and Ho, Perraudin and Sorensen (1996) in continuous

time. The same approach was also considered for modeling interest rates by Constantinides

(1991), Ahn, Dittmar and Gallant (2000) and Leippold and Wu (1999). It means that these

models consider a Hermite model of order 2. However by taking the square of an AR(1) process,

they consider a restricted Hermite model. Gallant, Hsu and Tauchen (1999) and Chernov et al.

(2001) consider a model where the variance process is the exponential of the GARCH di�usion

process of Nelson (1990-b) and Wong (1964). As we already mention, the spectrum of this

process is mixed or continuous. Therefore, when the variance process is square-integrable, we

can encompass such models by considering an integral instead of a sum in the de�nition of the

variance process. Interestingly, Chen, Hansen and Carrasco (1999), show that when the spectrum

of a scalar di�usion is continuous, there exist a (non-linear) function of this di�usion such that

its spectral density is unbounded around zero, which looks like a long-memory property. As a

consequence, this is the case of the GARCH process when its spectrum is continuous. In other

words, in this case, the return process has a long memory stochastic volatility. This may explain

the long-memory founded in Gallant, Hsu and Tauchen (1999).40 Andersen (1994) considers

brie
y Taylor expansion of volatility models but did not study them. Finally, Robinson (2001)

considers Hermite polynomials expansions to study the memory of volatility models.41

Of course, econometricians are familiar with expansions around Hermite polynomials. This is

the case in the edgeworth expansion but also in the seminonparametric estimation of Gallant and

Tauchen (1989) and in the maximum-likelihood approximation method of Ait-Sahalia (2000).

This is di�erent from our case for two reasons. We assume that we consider the true model and

not an expansion of the volatility. Moreover, the choice of polynomials and more generally of

eigenfunctions depends on the underlying state variable which is not the case of these works.

40An alternative approach to generate models that look like as long-memory volatility ones is to consider a two
component (or factor) model as in Engle and Lee (1999). This is the multifactor case previously considered.

41In a di�erent perspective, Ghysels, Gouri�eroux and Jasiak (1998) and Pitt and Walker (1999) consider latent
variable models where the loading function is nonlinear. This function was speci�ed such that the marginal
distribution of the observable process is �xed, say Gamma. In this case, the dynamics of the observed process are
complicated and not characterized. Therefore, this approach is di�erent from ours.
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5 Concluding remarks

In this paper, we consider a 
exible approach for volatility modeling. We follow the main

idea of the SV literature, that is by specifying the volatility as a function of a state variable.

Rather than specifying the variance as being equal to a speci�c function of the state variable,

we assume that it is a linear combination of the eigenfunctions of the conditional expectation

operator associated to the state variable. Special examples are the log-normal and square root

SV models. When the state variable is Gaussian (resp square-root), the eigenfunctions are the

Hermite (resp Laguerre) polynomials. This 
exible approach has many advantages. First of all,

it allows us to generate fat tails. Moreover, the structure of the squared returns are ARMA

and hence simple to estimate. For the discrete time model, we derive conditional moment

restrictions based on the state variable as well as on the observations. For the continuous time

model, unconditional and conditional moments of the discrete time returns are derived in a

companion paper, Meddahi (2001-a). We also consider the long run properties of our model and

study the variance of the variance. Finally, we extend our model to the multifactor case.

Several other extensions of our model may be considered. For instance, we can incorporate

a time varying mean or drift, denoted mt. In particular, a 
exible approach is obtained by

assuming

mt =
pX
i=0

miEi(ft) where
pX
i=0

m2
i <1:

As a consequence, we allow the mean/drift to be a (square-integrable) nonlinear function of the

variance process.

We can also incorporate jumps in the continuous time model. The intensity (and/or size) of

the jump is then assumed to be a linear combination of the eigenfunctions. Instead of assuming

that (a component of) ft is continuous, we can assume that it is a continuous time Markov

chain, that is ft takes a �nite number of values. It turns out that in this case, we have also the

general theory about the eigenfunctions. Moreover, when the Markov chain is time reversible,

the eigenvalues are real numbers.

A usual assumption made in the SV literature is that the leverage e�ect is constant. However,

empirical evidence based on options data suggest that the leverage e�ect is time varying. This

leads Garcia, Luger and Renault (2001) to consider a discrete time model where the leverage

e�ect is time varying. Observe also that if one considers a multifactor model for the variance

process where the Brownian motions associated to the volatility factors are correlated to the

stock Brownian motion, then this implies a time varying leverage e�ect. This is the case of Jones

(2000) and Chernov et al. (2001). An alternative approach is to specify directly a stochastic

process for the correlation parameter. Consider the one factor case considered in Section 4 and

assume that the instantaneous correlation between the Brownian motion processes W
(1)
t and

W
(2)
t is not constant but time-varying and given by �t = G(zt), where zt is a state variable and

G a function which values are in [�1; 1]. The state variable zt may be the same as the factor

governing the volatility, i.e. ft, or another variable. The process zt may also be a Markov Chain

in continuous time. In this case, the set of values of �t is �nite. Observe that in this case the
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correlation is also a Markov chain and, hence, a mean-reverting process. A di�erent approach

to have mean reverting correlation with continuous state variable is obtained by assuming that

the correlation is characterized by a Jacobi di�usion:

d�t =
1

2
[(� + 1)(1� �t)� (�+ 1)(1 + �t)]dt+

q
1� �2t dW

(3)
t

where the Brownian motion process W
(3)
t is assumed to be independent with (W

(1)
t ;W

(2)
t )0.

Finally, while all the previous models were considered in an SV setting, the same approach

may be considered for ARCH-type models. More precisely, consider the process "t de�ned by

"t = �t�1ut

where the process ut is assumed to be i.i.d. with some distribution D(0; 1) and assume that

�t�1 is adapted to the information �("� ; � � t� 1). In other words, we consider an ARCH-type

model. Assume that the distribution function of ut is F (u; �) where F is a known function and

� an unknown parameter. Then, de�ne the process vt by vt = ��1(F (ut; �)) where � is the

distribution function of the N (0; 1) random variable. Let 
 a real number, j 
 j< 1, and de�ne

the processes ft and �t�1 by

ft = 
ft�1 +
q
1� 
2vt and

�2t�1 =
pX
i=0

aiHi(ft) where
pX
i=0

a2i <1:

Then the process "t is an ARCH-type model. Moreover it has the 
exibility of the eigenfunctions

volatility models studied in the previous sections. We call this model the Hermite ARCH model.

A special example is the Gaussian exponential ARCH model of Nelson (1991). Observe that

this model automatically incorporates the leverage e�ect when the odd Hermite polynomials are

included in the variance decomposition.
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Table 1. Decomposition of the variance process: discrete time model.
i ai wi cumi 
i ai wi cumi 
i

0 .558 - - - .349 - - -
1 .422 .742 .742 .978 .219 .816 .816 .980
2 .226 .212 .953 .956 .098 .161 .977 .961
3 .098 .041 .994 .935 .036 .022 .998 .942
4 .038 .006 .999 .914 .011 .002 .999 .923
5 .013 6.7e-04 1.00 .894 3.1e-04 1.6e-04 1.00 .904
6 3.8e-3 6.3e-05 1.00 .874 7.9e-04 1.1e-05 1.00 .886
7 1.1e-03 5.2e-06 1.00 .855 1.9e-04 6.1e-07 1.00 .868
8 2.9e-04 3.7e-07 1.00 .836 4.2e-05 3.1e-08 1.00 .851
9 7.5e-05 2.4e-08 1.00 .817 8.8e-06 1.3e-09 1.00 .834
10 1.8e-05 1.4e-09 1.00 .799 1.8e-06 5.2e-11 1.00 .817

Note. In the discrete time log-normal model yt = �t�1ut with log(�2t ) = !+
 log �2t�1+�vvt, where ut and vt are

independent and N (0; 1), we de�ne ft by ft =
log(�2t )� �

�
where � = !

1�
 and �2 =
�2
v

1�
2 . �
2
t is decomposed in

terms of Hermite polynomials: �2t =
P1

i=0
aiHi(ft) where ai = exp(�+ �2

2
) �ip

i!
. wi = a2i =(

P1
j=1

a2j) is the relative

weight of each polynomila in the variance decomposition while cumi =
Pi

j=1
wj is their cumulative weight. 


i is

the autoregressive parameter of each Hermite polynomial Hi(ft). We use the empirical results of Kim, Shephard

et Chib (1998) for Pound-US$ and Yen-US$ exchange rates returns. The empirical estimates of (!; 
; �v) are

respectively (-.019,.978,.158) and (-.025,.980,.125).

Table 2. Decomposition of the variance process: continuous time model.
i ai wi cumi 
i ai wi cumi 
i

0 .396 - - - 0.551 - - -
1 .133 .945 .945 .994 .384 .778 .778 .987
2 .032 .053 .998 .988 .189 .189 .966 .974
3 .006 .002 .999 .982 .076 .031 .996 .960
4 .001 5.6e-05 1.00 .975 .027 .004 .999 .947
5 1.5e-04 1.2e-06 1.00 .969 .009 .0004 1.00 .934
6 2.1e-05 2.3e-08 1.00 .963 .003 2.8e-05 1.00 .922
7 2.7e-06 3.8e-10 1.00 .957 6.1e-04 1.9e-06 1.00 .909
8 3.1e-07 5.4e-12 1.00 .952 2.0e-04 1.2e-07 1.00 .897
9 3.6e-08 6.8e-14 1.00 .946 3.5e-05 6.5e-09 1.00 .885
10 3.8e-09 7.6e-16 1.00 .939 7.8e-06 3.1e-10 1.00 .873

Note. In the continuous time log-normal model dyt = �t

hp
1� �2dW

(1)
t + �dW

(2)
t

i
, d log(�2t ) = k[� �

log(�2t )]dt + �dW
(2)
t ; we de�ne ft by ft �

p
2k
�
(log �2t � �): �2t is decomposed in terms of Hermite polynomials:

�2t =
P1

i=0
aiHi(ft) where ai = exp(�+ �2

4k
) (�=

p
2k)ip
i!

: wi = a2i =(
P1

j=1
a2j) is the relative weight of each polynomila

in the variance decomposition while cumi =
Pi

j=1
wj is their cumulative weight. 
i is the autoregressive

parameter of each Hermite polynomial Hi(ft) for a daily frequency. We use the empirical results of Andersen,
Benzoni and Lund (2001). The empirical estimates of (�; k; �; �) are respectively (-.984,.0062,.038,0) and

(-.838,.0136,.115,-.575).
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Table 3. GMM estimation of HSV(2) model

Data a0 a2 
 Jtest

Pound-US$ 0.496 0.606 0.982 0.432
(0.057) (0.158) (0.023)

Yen-US$ 0.338 0.266 0.953 1.516
(0.030) (0.053) (0.042)

Note. GMM Esimates and standard errors (in parenthese) of the HSV(2) model yt = �t�1ut where �2t�1 =

a0 + a2H2(ft�1) with ft = 
ft�1 +
p
1� 
2vt, ut and vt are independent and N (0; 1). The moments used in the

inference are E[y2t ], E[y
4
t ], Cov(y

2
t ; y

2
t�i) for i = 15 and 20. Newey-West (1987) procedure with 10 lags is used.

Jtest is the overidenti�cation test.

Table 4. Implied moments by the di�erent models
- Data HSV(2) log-n1 log-n2

Pound-US$
Var["t] .505 .496 .558 .488
E["4t ] 2.01 1.84 1.65 1.69

Kurtosis["t] 7.87 7.48 5.32 7.11

 - .982 .978 .978

Yen-US$
Var["t] .352 .338 .349 .338
E["4t ] .612 .556 .543 .554

Kurtosis["t] 4.97 4.86 4.45 4.86

 - .954 .980 .918

Note. Implied moments (variance, fourth moment and kurtosis) by the di�erente models. For the log-normal

model, we use Kim, Shephard and Chib (1998) estimators (log-n1) and GMM estimators (log-n2) from Table 5.

Table 5. GMM estimation of log-normal model
Data � 
 � Jtest

Pound-US$ -1.150 0.978 0.929 0.425
(0.107) (0.034) (0.121)

Yen-US$ -1.326 0.918 0.694 1.548
(0.094) (0.078) (0.088)

Note. GMM Esimates and standard errors (in parenthese) of the log-normal model yt = �t�1ut where log(�2t ) =

! + 
 log �2t�1 + �vvt, where ut and vt are independent and N (0; 1). We estimate (�; 
; �) where � = !
1�
 and

�2 =
�2
v

1�
2 . The moments used in the inference are E[y2t ], E[y
4
t ], Cov(y

2
t ; y

2
t�i) for i = 15 and 20. Newey-West

(1987) procedure with 10 lags is used. Jtest is the overidenti�cation test.

Table 6. Implied sixth standardized moment
Data 2 4 6 8 log-n1 log-n2

Pound-US: 13.1 10.7 32.3 168.5 1073 5.4 12.7

Yen-US: 3.6 4.3 10.1 46.5 288.6 3.3 4.3

Note. The standardized sixth moment is de�ned by E[y6t ]=(15E[y
2
t ]
3). We report this moment for HSV models

where �2t = a0 + apHp(ft) for p = 2; 4; 6; and 8 by using the estimates of Table 3, and for the log-normal model

by using Kim, Shephard and Chib (1998) estimates (log-n1) and GMM ones (log-n2) from Table 5.
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Appendix

In the sequel, we will use the following notations

It = �("� ; � � t) and Jt = �("� ; f� ; � � t): (A.1)

Proof of Proposition 4.1. We have:

E["t] = E[�t�1E[ut j Jt�1]] = 0;

E["2t ] = E[�2t�1E[u
2
t j Jt�1]] = E[�2t�1] =

Pp
i=0 aiE[Ei(ft)] = a0;

E["4t ] = E[�4t�1E[u
4
t j Jt�1]] = E[u4t ]E[�

4
t�1] = Kurt[ut]

pX
i=0

pX
j=0

aiajE[Ei(ft)Ej(ft)] =

Kurt[ut]
pX
i=0

pX
j=0

aiajÆij = Kurt[ut]
pX
i=0

a2i : Therefore, (4.6) is straithforwardly deduced.2

Proof of Proposition 4.2.

Cov("2t ; "
2
t�j) = E["2t "

2
t�j ]�E["2t ]

2

= E[�2t�1�
2
t�1�j ]� a20 (since the processes ut and ft are independent)

=
Pp
i=0

Pp
k=0 aiakE[Ei(ft�1)Ek(ft�1�j)]� a20 =

Pp
i=0

Pp
k=0 aiakÆik�

j
i � a20

=
Pp
i=1 a

2
i�
j
i , i.e. (4.7).2

Proof of Proposition 4.3. We have:

E["2t "
2
t�j ] = E[�2t�1u

2
t�

2
t�j�1u

2
t�j ] = E[�2t�1�

2
t�j�1u

2
t�j ] =

Pp
i=0 aiE[E[Hi(ft�1) j

Jt�j ]�2t�j�1u
2
t�j ] =

Pp
i=0 ai


i(j�1)E[Hi(ft�j)�2t�j�1u
2
t�j ] =

Pp
i=0 ai


i(j�1)E[E[Hi(ft�j)u2t�j j
Jt�j�1]�2t�j�1]:

We will now compute E[Hi(ft�j)u2t�j j Jt�j�1]. De�ne zt by ut = �vt +
p
1� �2zt. The

process zt is i.i.d. N (0; 1) and independent from vt. Therefore u2t = �2vt + (1 � �2)z2t +

2�
p
1� �2vtzt: Hence,

E[Hi(ft+1)u
2
t+1 j Jt] = �2E[Hi(ft+1)v

2
t+1 j Jt] + (1� �2)E[Hi(ft+1) j Jt]

= �2E[Hi(ft+1)v
2
t+1 j Jt] + (1 � �2)
iHi(ft): The process Hi(ft+1)v

2
t+1 is square-integrable;

hence:

Hi(ft+1)v
2
t+1 =

P1
j=0wjHj(ft+1) where wj = E[Hi(ft+1)Hj(ft+1)v

2
t+1]. From the transition

equation of ft (4.9), we have: v
2
t+1 =

1

1� 
2
(f2t+1 + 
2f2t � 2
ft+1ft). Therefore

E[v2t+1 j ft+1] =
1

1� 
2
(f2t+1 + 
2E[f2t j Jt+1]� 2
ft+1E[ft j ft+1])

=
1

1� 
2
(f2t+1 + 
2E[

p
2H2(ft) + 1 j Jt+1]� 2
ft+1E[H1(ft) j ft+1])

=
1

1� 
2
(f2t+1 + 
2(

p
2
2H2(ft+1) + 1)� 2
ft+1
H1(ft+1) since ft is time-reversible. Thus,

E[v2t+1 j ft+1] = f2t+1(1� 
2) + 
2: As a consequence,

wj = E[Hi(ft+1)Hj(ft+1)E[v
2
t+1 j ft+1]] = (1 � 
2)E[Hi(ft+1)Hj(ft+1)f

2
t+1] +


2E[Hi(ft+1)Hj(ft+1)].

= (1� 
2)E[Hi(ft+1)Hj(ft+1)f
2
t+1] + 
2Æij . We compute now wi. We have:

� for i = 0: wj = (1�
2)E[Hj(ft+1)(
p
2H2(ft+1)+1)]+
2Æ0j = (1�
2)(p2Æ2j+ Æ0j)+
2Æ0j =

(1� 
2)
p
2Æ2j + Æ0j ;
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� for i � 1: for j 6= 0, by using the recursive formula (2.6) which is true for i � 1 with convention

H�1 = 0, we have

E[Hi(ft+1)Hj(ft+1)f
2
t+1]

= E[fpi+ 1Hi+1(ft+1) +
p
iHi�1(ft+1)gf

p
j + 1Hj+1(ft+1) +

p
jHj�1(ft+1)g]

= Æij(1 + 2i) +
q
(i� 1)iÆ(i�2)j +

q
(i+ 1)(i+ 2)Æ(i+2)j : Thus,

wj = (1 + 2i(1 � 
2))Æij + (1� 
2)
p
(i� 1)iÆ(i�2)j + (1� 
2)

p
(i+ 1)(i + 2)Æ(i+2)j :

For j = 0, w0 = (1 � 
2)E[Hi(ft+1)f
2
t+1] + 
2Æi0 = (1 � 
2)E[Hi(ft+1)(

p
2H2(ft+1) + 1)] =

(1� 
2)
p
2Æi2.

As a conclusion, in all cases, under the convention H�1 = 0, we have

Hi(ft+1)v
2
t+1

= (1�
2)p(i� 1)iHi�2(ft+1)+(1+2i(1�
2))Hi(ft+1)+(1�
2)p(i+ 1)(i+ 2)Hi+2(ft+1):

This implies that

E[Hi(ft�j)v2t�j j Jt�j�1] = (1� 
2)
p
(i� 1)i
i�2Hi�2(ft�j�1)

+(1 + 2i(1 � 
2))
iHi(ft�j�1) + (1� 
2)
p
(i+ 1)(i + 2)
i+2Hi+2(ft�j�1):

Hence, E[Hi(ft�j)u2t�j j Jt�j�1] = (1��2)
iHi(ft�j�1)+�2
n
(1� 
2)

p
(i� 1)i
i�2Hi�2(ft�j�1)

+(1 + 2i(1 � 
2))
iHi(ft�j�1) + (1� 
2)
p
(i+ 1)(i + 2)
i+2Hi+2(ft�j�1)

o
:

Thus, E[E[Hi(ft�j)u2t�j j Jt�j�1]�2t�j�1] = (1 � �2)
iai + �2
i
n
(1� 
2)

p
(i� 1)i
�2ai�2

+(1 + 2i(1 � 
2))ai + (1� 
2)
p
(i+ 1)(i + 2)
2ai+2

o
, with the convention ai = 0 if i < 0 or

i > p. Then, (4.10) is deduced.2

Proof of Proposition 4.4. Since E["t j "� ; f� ; � � t� 1] = 0, we have E["t j "� ; � � t� 1] = 0,

i.e. (4.12).

By (4.11), we get

"2t = a0 +
pX
i=1

aiEi(ft�1) + �t where E[�t j "� ; f� ; � � t� 1] = 0:

But each Ei(ft�1) is an AR(1) with autoregressive coeÆcient �i. Therefore

Ei(ft�1) = �iEi(ft�2) + �i;t�1 where E[�i;t�1 j "� ; f� ; � � t� 2] = 0:

Hence, when p is �nite,Qp
i=1(1� �iL)["

2
t � a0] =

Pp
i=1

Qp
j=1;j 6=i(1� �jL)�i;t�1 +

Qp
i=1(1� �iL)�t.

As a consequence, E[
Qp
i=1(1� �iL)["

2
t � a0] j "� ; f� ; � � t� p� 1] = 0 and, hence, (4.13).

When the fourth moment of "t is �nite, the second moment of wt de�ned in (refwt) is �nite.

Besides, (4.13) implies that E[wt j "� ; � � t � p � 1] = 0. Therefore Cov(wt; wt�h) = 0 for all

h > p. In other words, wt is a MA(p). Therefore, "2t is an ARMA(p,p) with autoregressive

coeÆcients �1, �2,...,�p.

Proof of Proposition 4.6. Since "t is a m.d.s., we have: E["
(m)2
tm ] = mE["2t ] = ma0. The no

leverage e�ect assumption implies that:

E["
(m)4
tm ] =

m�1X
i=0

E["4tm�i] + 6
X

0�i<j�m�1
E["2tm�i"

2
tm�j ] = mE["4t ] + 6

m�1X
s=1

(m� s)E["2t "
2
t�s].
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For

0 < s: E["2t "
2
t�s] =

X
0�i;j�p

aiajE[Ei(ft�1)Ej(ft�s�1)] =
X

0�i;j�p
aiaj�

s
iE[Ei(ft�s�1)Ej(ft�s�1)] =

pX
i=0

a2i�
s
i : Thus,

m�1X
s=1

(m� s)E["2t "
2
t�s] =

m�1X
s=1

(m� s)(
pX
i=0

a2i�
s
i ) =

pX
i=0

a2i (
m�1X
s=1

(m� s)�si )

= a20
m(m� 1)

2
+

pX
i=1

a2i (
m�1X
s=1

(m� s)�si ) = a20
m(m� 1)

2
+

pX
i=1

a2i
�i

(1� �i)2
(�mi �m�i+m� 1):

Hence, E["
(m)4
tm ] = mE["4t ] + 3a20m(m� 1) + 6

pX
i=1

a2i
�i

(1� �i)2
(�mi �m�i +m� 1)

Therefore,

kurt("
(m)
tm ) =

E["
(m)4
tm ]

E["
(m)2
tm ]2

=
1

m

E["4t ]

a20
+ 3

(m� 1)

m
+

6

a20

pX
i=1

a2i
�i

(1� �i)2
�mi �m�i +m� 1

m2
: As a

consequence, we get (4.17).

When m �! +1, we have
�mi �m�i +m� 1

m2
=

1

m
+ o(

1

m
). Hence, we get (4.18).2

Lemma A1. Sixth moment Let yt = �t�1ut such that �t�1 = a0 + apHp(ft). Then:

E[y6t ]

15E[y2t ]
3
=
a30 + 3a0a

2
p + a3p[

p!
(p=2)! ]

3

a30
:

For the log-normal model,
E[y6t ]

15E[y2t ]
3
= exp(3�2):

Proof of Lemma A1. We have

E[y6t ] = E[�6t�1u
6
t ] = E[�6t�1]E[u

6
t ] = E[�6t�1]15:

HSV model: �2t�1 = a0 + apHp(ft�1). Thus,

E[�6t�1] = a30 + 3a20apE[Hp(ft�1)] + 3a0a
2
pE[Hp(ft�1)2] + a3pE[Hp(ft�1)3]

= a30 + 3a0a
2
p + a3pE[Hp(ft�1)3]:

When p is even, E[Hp(ft�1)3] = [
p!

(p=2)!
]3. Therefore E[y6t ] = 15[

p!

(p=2)!
]3:

Log-normal model: E[�6t ] = exp(3�+
9�2

2
) while E[�2t ] = exp(�+

�2

2
).2
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