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RÉSUMÉ 

 

 Nous étudions ici le problème de positionnement de deux biens publics pour un 

groupe d’agents avec des préférences unimodales sur un intervalle. Une alternative 

spécifie un emplacement pour chaque bien public. Dans Miyagawa (1998), chaque agent 

consomme seulement son bien public préféré sans rivalité. Nous étendons les 

préférences de manière lexicographique et caractérisons les classes de préférences à 

sommet unique par l’optimalité au sens de Pareto et la domination par remplacement. Ce 

résultat est assez différent de la caractérisation correspondante faite par 

Miyagawa (2001a). 

 

Mots clés : préférences unimodales, biens publics multiples, lexicographique, domination 

par remplacement 

 

 

 

 

ABSTRACT 

 

We study the problem of locating two public goods for a group of agents with 

single-peaked preferences over an interval. An alternative specifies a location for each 

public good. In Miyagawa (1998), each agent consumes only his most preferred public 

good without rivalry. We extend preferences lexicographically and characterize the 

class of single-peaked preference rules by Pareto-optimality and replacement-

domination. This result is considerably different from the corresponding characterization 

by Miyagawa (2001a). 

 

Key words : single-peaked preferences, multiple public goods, lexicographic, 

replacement-domination 

 
 



1 Introduction

Hotelling (1929) considers two competing businesses choosing where to locate on a

street. He assumes that the businesses are identical and each individual patronizes

only the one that is closest to where he lives. Miyagawa (1998) is the �rst who studies

this model from a normative prospective and identi�es rules on the basis of desirable

properties. He considers the problem of a state government having to choose two

locations where to build two identical public facilities. An alternative speci�es for

each of the two public goods a location. Agents have single-peaked preferences on

some interval of possible locations and consume the public goods without rivalry:

given two alternatives, an agent prefers an alternative to another if there is a location

which he prefers to each of the locations of the other alternative. We call this extension

of single-peaked preferences from the set of possible locations to the set of alternatives

its max-extension.1

There are environments in which agents compare alternatives di�erently. At each

point of time when an individual desires to consume the public good, he uses exactly

one public good and therefore he has a single-peaked preference relation over the

interval. However, sometimes it is not possible for him to consume the public good

at his most preferred location. This could be due to several reasons, for example the

good is used by other agents and therefore congested, or the good at his most preferred

location is out of service. But primarily each agent consumes the good at his most

preferred location. One example is where the town government locates two identical

libraries on a street. If a certain book is not available at the �rst choice library of an

individual who wants to borrow it, then he has to consume his second choice library.

In these contexts we propose the lexicographic-extension of preferences2: given two

alternatives, �rst an agent compares the most preferred locations of each of the two

alternatives, and if there is a tie, then he compares the other locations. It turns out

that this feature of preferences brings about results that are considerably di�erent

1The model is further studied in Ehlers (2001) and Miyagawa (2001a,b). Further studies of

the location of multiple public goods with di�erent preferences are Barber�a and Bevi�a (1999) and

Bogomolnaia and Nicol�o (1999).
2Dutta and Mass�o (1997) study two-sided matching when workers have lexicographic preferences.

Each worker �rst compares �rms and second co-workers.
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from Miyagawa (2001a).

A basic requirement is Pareto-optimality, meaning that only e�cient alternatives

are chosen. Pareto-optimality is stronger in Miyagawa (2001a) than in our model.

Indeed, except for preference pro�les at which all agents have the same peak, each

alternative that is Pareto-optimal with respect to the max-extension is also Pareto-

optimal with respect to the lexicographic-extension.

Our main property is a notion of fairness. If the environment of an economy

changes, then the welfares of all agents who are not responsible for this change are

a�ected in the same direction: either all weakly gain or all weakly lose. As a variable

parameter of an economy which may change over time, we consider preferences. Sol-

idarity applied to such situations says that when the preference relation of an agent

changes, then the welfares of all other agents are a�ected in the same direction. This

replacement principle is called welfare-domination under preference-replacement, or

simply replacement-domination.3

In di�erent settings the \replacement principle" has been studied.4 It seems to be

a general feature of this property that in any model any class of rules characterized

by replacement-domination and certain other properties is restricted. The review of

Thomson (1999) supports this statement. For two pure public goods and the max-

extension, Miyagawa (2001a) shows that there are only two rules satisfying Pareto-

optimality and replacement-domination: the left-peaks rule and the right-peaks rule

(for more details see Section 3). When considering the lexicographic-extension of pref-

erences and therefore weakening Pareto-optimality, we show that Pareto-optimality

and replacement-domination admit a large class of rules.

Each rule satisfying these properties is described by means of a �xed continuous

and single-peaked binary relation over the set of locations. For each preference pro�le

such a rule chooses one location to be a most preferred peak in the peak pro�le

according to the �xed single-peaked relation. The second location is indi�erent to

3Moulin (1987) introduces replacement-domination in the context of binary choice with quasi-

linear preferences. He calls it \agreement".
4It has been studied in private good economies with single-peaked preferences (Barber�a, Jackson,

and Neme, 1997; Thomson, 1997), in classical exchange economies (Sprumont and Zhou, 1999), in

economies with indivisible goods and monetary transfers (Thomson, 1998), and in one public good

economies (Thomson, 1993; Vohra, 1999; Ehlers and Klaus, 2001).
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this peak according to the �xed single-peaked relation such that, if Pareto-optimality

is not violated, the locations belong to opposite sides of the peak of the �xed relation.

We call these rules single-peaked preference rules and characterize them by Pareto-

optimality and replacement-domination.

The organization of the paper is as follows. Section 2 introduces the general

model and the axioms. Section 3 presents the de�nition and the characterization of

the single-peaked preference rules. Section 4 contains the proof.

2 The Model

Let N � f1; : : : ; ng, n 2 N , be the set of agents. Each agent i 2 N is equipped with

a single-peaked and continuous preference relation Ri over [0; 1]. By Ii we denote the

indi�erence relation associated with Ri, and by Pi the corresponding strict preference

relation. Single-peakedness means that there exists a location, called the peak of Ri

and denoted by p(Ri), such that for all x; y 2 [0; 1], if x < y � p(Ri) or x > y � p(Ri),

then yPix. By R we denote the set of all single-peaked preferences over [0; 1], and

by RN the set of (preference) pro�les R � (Ri)i2N such that for all i 2 N , Ri 2 R.

Given S � N , RS denotes the restriction (Ri)i2S of R 2 RN to S. Given R 2 RN ,

p(R) denotes the smallest peak in the pro�le (p(Ri))i2N , and p(R) the greatest peak

in the pro�le (p(Ri))i2N .

We choose the locations for two identical public goods in [0; 1]. Let M � f1; 2g.

Each agent has the freedom to choose the public goods he prefers. Therefore, the order

in which we locate the facilities is irrelevant. An alternative is a tuple x � (x1; x2)

such that 0 � x1 � x2 � 1. We denote by [0; 1]M the set of alternatives. Note that

(1; 0) is not an alternative.

Each agent compares two alternatives via the lexicographic preference relation over

[0; 1]M induced by his single-peaked preference relation over [0,1].

Lexicographic-Extension of Preferences: Let i 2 N and Ri 2 R. Given two

alternatives x; y 2 [0; 1]M and two permutations �; � of M such that x�(1)Rix�(2) and

y�(1)Riy�(2), x is lexicographically strictly preferred to y if and only if either x�(1)Piy�(1)

or (x�(1)Iiy�(1) and x�(2)Piy�(2)). Furthermore, x is lexicographically indi�erent to y if
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and only if x�(1)Iiy�(1) and x�(2)Iiy�(2). �

Abusing notation, we use the same symbols to denote preferences over possible

locations and lexicographic preferences over alternatives. When we extend preferences

lexicographically, weak upper contour sets are neither closed nor open, and non-

convex. Furthermore, indi�erence sets only contain a �nite number of alternatives.

Figure 1 illustrates this fact.

[Figure 1 enters around here.]

We also introduce Miyagawa's max-extension of preferences from [0,1] to [0; 1]M .

Max-Extension of Preferences, Rmax
i : Let i 2 N and Ri 2 R. Given two

alternatives x; y 2 [0; 1]M and two permutations �; � of M such that x�(1)Rix�(2) and

y�(1)Riy�(2), x is maximally strictly preferred to y, xPmax
i y, if and only if x�(1)Piy�(1).

Furthermore, x is maximally indi�erent to y, xImax
i y, if and only if x�(1)Iiy�(1). �

Remark 2.1 In Figure 1 the closure of the weak upper contour set of R1 at (0.2,0.6)

is the weak upper contour set of Rmax
1 at (0.2,0.6). It is easy to see that this true for

all x 2 [0; 1]M such that p(R1) =2 fx1; x2g. If p(R1) 2 fx1; x2g, then the indi�erence

set of Rmax
1 at x consists of the two line segments [0; 0:5]� f0:5g and f0:5g� [0:5; 1].

If x1 = 0:5, then the weak upper contour set of the lexicographic R1 at x consists

of the two line segments [1� x2; 0:5]� f0:5g and f0:5g � [0:5; x2]. As we will show,

this \slight" change in weak upper contour sets and indi�erence sets brings about

conclusions that are considerably di�erent from those in Miyagawa (2001a). �

A (decision) rule is a mapping ' that associates with each R 2 RN an alter-

native, denoted by '(R) = ('1(R); '2(R)). Pareto-optimality says that for each

preference pro�le the chosen alternative cannot be changed in such a way that no

agent is worse o� and some agent is better o�. Given S � N and R 2 RN , let

E(RS) denote the set of Pareto-optimal (or e�cient) alternatives for RS. Formally,

E(RS) = fy 2 [0; 1]M j for all x 2 [0; 1]M , if for some i 2 S, xPiy, then for some j 2 S,

yPjxg.
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Pareto-Optimality: For all R 2 RN , '(R) 2 E(R).

For Pareto-optimality to hold it is not su�cient that for each public good the

selected location belongs to [p(R); p(R)]. For every chosen alternative it is necessary

that the closed interval having as two endpoints the two selected locations contains

at least one peak. The straightforward proof is left to the reader.

Lemma 2.2 Let ' be a rule. Then ' satis�es Pareto-optimality if and only if for

all R 2 RN the following holds: (i) '1(R); '2(R) 2 [p(R); p(R)], and (ii) there exists

i 2 N such that p(Ri) 2 ['1(R); '2(R)].

By Lemma 2.2, the set of e�cient alternatives depends only on the peaks of the

pro�le.

Remark 2.3 For all R 2 RN , let E(Rmax) denote the set of Pareto-optimal alter-

natives in [0; 1]M when we extend preferences maximally. It is easy to see that for

all x 2 [0; 1]M , x 2 E(Rmax) if and only if (i) x1; x2 2 [p(R); p(R)] and (ii) for some

i; j 2 N , p(Ri); p(Rj) 2 [x1; x2], x1Pix2, and x2Pjx1. For the lexicographic-extension

of preferences, Pareto-optimality is weaker than for the max-extension. For all R 2

RN such that p(R) < p(R), E(Rmax) � E(R). Generally the set E(R) is considerably

larger than E(Rmax). For example, let R 2 RN be such that fp(Ri) j i 2 Ng = f0; 1g.

Then E(Rmax) = f(0; 1)g � ([0; 1]� f1g) [ (f0g � [0; 1]) = E(R). �

The solidarity property we discuss is welfare-domination under preference-replace-

ment, or for short replacement-domination, introduced by Moulin (1987). It requires

that when the preference relation of some agent changes, the welfares of all other

agents are a�ected in the same direction.

Replacement-Domination: For all j 2 N , and all R; �R 2 RN such that RNnfjg =

�RNnfjg, either [for all i 2 Nnfjg, '(R)Ri'( �R)] or [for all i 2 Nnfjg, '( �R)Ri'(R)].

3 Single-Peaked Preference Rules

Miyagawa (2001a) shows that when n � 4 and we extend preferences from [0,1] to

alternatives maximally, only the following two rules satisfy Pareto-optimality and
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replacement-domination.5

Left-Peaks Rule, L: For all R 2 RN , if p(R) = p(R), then L(R) � (p(R); p(R)),

and otherwise, L(R) � (p(R);minfp(Rj) j j 2 N and p(R) < p(Rj)g).

Right-Peaks Rule, G: For allR 2 RN , if p(R) = p(R), then G(R) � (p(R); p(R)),

and otherwise, G(R) � (maxfp(Rj) j j 2 N and p(Rj) < p(R)g; p(R)).

By Lemma 2.2, the left-peaks rule and the right-peaks rule satisfy Pareto-optimality.

However, both rules violate replacement-domination when agents compare alterna-

tives lexicographically.

Example 3.1 Let n � 3 and R 2 RN be such that p(R1) = 0, p(R2) =
1
2
, p(R3) = 1,

and for all i 2 Nnf1; 2; 3g, p(Ri) 2 f0; 1g. Let �R 2 RN be such that �RNnf2g = RNnf2g

and p( �R2) =
2
3
. Then L(R) = (0; 1

2
) and L( �R) = (0; 2

3
). In particular, L(R)P1L( �R)

and L( �R)P3L(R). Thus, the left-peaks rule violates replacement-domination. Simi-

larly, the right-peaks rule violates replacement-domination. �

A \constant" rule selecting for each preference pro�le the same alternative satis�es

replacement-domination, but not Pareto-optimality. Therefore, in our model Pareto-

optimality and replacement-domination are independent.

Each rule satisfying Pareto-optimality and replacement-domination is described

by a continuous and single-peaked binary relation over [0; 1]. Here is an example of

such a rule when the single-peaked preference relation is continuous and symmetric

around the peak 1
3
.

Example 3.2 We represent the symmetric single-peaked preference relation with

peak 1
3
by its corresponding indi�erence map. Let f : [0; 2

3
] ! [0; 2

3
] be such that for

all x 2 [0; 2
3
], f(x) � 2

3
� x. Then f(1

3
) = 1

3
. For all R 2 RN , we de�ne the rule

�f as follows: (a) if p(R) > 1
3
, then �f(R) � (p(R); p(R)); (b) if p(R) < 1

3
, then

�f(R) � (p(R); p(R)); and (c) if 1
3
2 [p(R); p(R)] and j 2 ft 2 N j for all i 2 N ,

5In the trivial case, when all peaks coincide, a rule satisfying Pareto-optimality and replacement-

domination only needs to locate one good at the unanimous peak. We refer to Miyagawa (2001a)

for the details.
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jp(Ri)�
1
3
j � jp(Rt)�

1
3
jg, then �f(R) 2 f(p(Rj); f(p(Rj))); (f(p(Rj)); p(Rj))g. When

p(R1) � : : : � p(Rl) �
1
3
� p(Rl+1) � : : : � p(Rn), Figure 2 illustrates Case (c) for

j = l. �

[Figure 2 enters around here.]

Before we formally de�ne our rules, we introduce an equivalent representation of

a single-peaked preference relation over [0; 1].

Let R0 2 R. Then 0R01 or 1P00. Suppose that 0R01. Since R0 is continuous,

for some b 2 [p(R0); 1], 0I0b. For all x 2 [0; b], let f(x) 2 [0; b] be such that xI0f(x)

and the following holds: (i) when x � p(R0), f(x) � p(R0), and (ii) when x � p(R0),

f(x) � p(R0). Because R0 is continuous, it follows that f is continuous. Therefore,

with R0 we associate a unique function f : [0; b] ! [0; b] such that f is continuous,

f = f�1 (this follows from R0 being a preference relation), and f is strictly decreasing

(this follows from single-peakedness of R0). In particular, f possesses as a unique �xed

point p(R0), i.e. f(p(R0)) = p(R0). Furthermore, associated with such a function is

a unique single-peaked preference relation on [0,1].

Let f : [0; b] ! [0; b] (or, alternatively, f : [b; 1] ! [b; 1]) be a continuous strictly

decreasing function such that f(0) = b (f(b) = 1) and f = f�1 (f is symmetric).

Denote by a its unique �xed point and by F the set of all such functions.

Single-Peaked Preference Rules, �f : Given f 2 F , the single-peaked preference

rule �f based on f is de�ned as follows. For all R 2 RN such that p(Ri1) � � � � �

p(Rin),

� if a =2 [p(R); p(R)], then

�f(R) �

(
(p(R); p(R)) when a < p(R);

(p(R); p(R)) when p(R) < a:

� if p(Ril) � a � p(Ril+1), then

�f(R) �

(
(p(Ril); f(p(Ril))) when f(p(Ril)) � p(Ril+1);

(f(p(Ril+1)); p(Ril+1)) otherwise.
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Theorem 3.3 below says that if N contains at least 3 agents, then every decision

rule satisfying Pareto-optimality and replacement-domination is a single-peaked pref-

erence rule. Section 4 contains the proof of Theorem 3.3. Note that when N contains

only two agents, replacement-domination has no bite.

Theorem 3.3 Let n � 3. Then the single-peaked preference rules are the only rules

satisfying Pareto-optimality and replacement-domination.

Remark 3.4 In Miyagawa (2001a) we have to distinguish two cases. If N contains

at least four agents, then the left-peaks rule and the right-peaks rule are the only rules

satisfying Pareto-optimality and replacement-domination. If N contains three agents,

then any rule choosing for each pro�le two distinct peaks satis�es Pareto-optimality

and replacement-domination. In Theorem 3.3, there is no distinction between these

two cases. �

Each single-peaked preference rule satis�es anonymity (the rule is symmetric in

its arguments) and coalitional strategy-proofness (no group of agents can gain by

jointly mispresenting their true preferences), as the careful reader may check. There-

fore, other rules than rules choosing for each public good the corresponding location

according to some median operation may satisfy strategy-proofness and additional

axioms.6 Note that we do not require the above properties, they are implied by

Pareto-optimality and replacement-domination.

Finally we discuss the location of three public facilities. The result of Miyagawa

(2001a) generalizes to these cases as follows:7 If n � 5, then a rule satis�es Pareto-

optimality and replacement-domination with respect to the max-extension if and only

if either for all pro�les the three di�erent smallest peaks are chosen, or for all pro�les

the three di�erent greatest peaks are chosen.

It is not obvious how to extend a single-peaked preference rule to the location of

three goods. There are two single-peaked preference rules which can be extended in a

straightforward way: it is the rule choosing for all pro�les and all facilities the smallest

peak (call this rule the smallest-peak rule) and the rule choosing for all pro�les and all

6The �rst who characterized median solutions for one public good economies was Moulin (1980).
7Personal communication with E. Miyagawa at the Fourth International Meeting of the Society

for Social Choice and Welfare, 1998, Vancouver, BC, Can.
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facilities the greatest peak (call this rule the greatest-peak rule).8 The smallest-peak

rule and the greatest-peak rule satisfy Pareto-optimality and replacement-domination

with respect to the lexicographic extension when we locate three facilities.

4 Proof of Theorem 3.3

Throughout this section let n � 3 and ' be a rule satisfying Pareto-optimality and

replacement-domination. The following implications will be useful.

First, we prove that for any two e�cient alternatives, if all agents are indi�erent

between them, then the two alternatives are the same.

Lemma 4.1 For all S � N , all R 2 RN , and all x; y 2 E(RS), if for all i 2 S, xIiy,

then x = y.

Proof. Let j 2 S be such that p(Rj) = mini2S p(Ri). Since x; y 2 E(RS), p(Rj) �

x1 � x2 and p(Rj) � y1 � y2. Because xIjy, it follows that x1 = y1 and x2 = y2.

Hence, x = y. �

Second, if the preference relation of some agent changes and the choices of the rule

at the initial and at the new pro�le are Pareto-optimal for the pro�le consisting of the

remaining agents' preferences, then the same alternative is chosen for both pro�les.

Lemma 4.2 Let j 2 N and R; �R 2 RN be such that RNnfjg = �RNnfjg. If '(R); '( �R) 2

E(RNnfjg), then '(R) = '( �R).

Proof. By replacement-domination, either [for all i 2 Nnfjg, '(R)Ri'( �R)] or [for

all i 2 Nnfjg, '( �R)Ri'(R)]. Since '(R); '( �R) 2 E(RNnfjg), then for all i 2 Nnfjg,

'(R)Ii'( �R). Hence, by Lemma 4.1, '(R) = '( �R). �

8For two public goods, the smallest-peak rule and the greatest-peak rule, respectively, are the

single-peaked preference rules where the peak of the single-peaked preference relation is at 0 and at

1, respectively.

9



Third, if the preference relation of some agent changes and all Pareto-optimal

alternatives at the new pro�le are also e�cient for the pro�le consisting of the re-

maining agents' preferences, then all these agents weakly prefer the alternative chosen

by the rule for the new pro�le to the initially chosen alternative.

Lemma 4.3 Let j 2 N and R; �R 2 RN be such that RNnfjg = �RNnfjg. If E( �R) =

E(RNnfjg), then for all i 2 Nnfjg, '( �R)Ri'(R).

Proof. By replacement-domination, either [for all i 2 Nnfjg, '( �R)Ri'(R)] or [for

all i 2 Nnfjg, '(R)Ri'( �R)]. Suppose that the assertion of Lemma 4.3 does not

hold. Thus, for all i 2 Nnfjg, '(R)Ri'( �R), and for some h 2 Nnfjg, '(R)Ph'( �R).

Because E( �R) = E(RNnfjg), '( �R) 2 E(RNnfjg). The previous two facts constitute a

contradiction. �

Successive applications of Lemma 4.2 yield the following lemma.

Lemma 4.4 Let R 2 RN be such that jfp(Ri) j i 2 Ngj � n� 1. For all �R 2 RN , if

fp( �Ri) j i 2 Ng = fp(Ri) j i 2 Ng, then '( �R) = '(R).

The next lemma is an important step of the proof of Theorem 3.3. It says that for

any preference pro�le, the open interval having as endpoints the two chosen locations

contains no peak.

Lemma 4.5 For all R 2 RN and all i 2 N , p(Ri) =2 ]'1(R); '2(R)[.

Proof. Suppose that for some R 2 RN and some j 2 N ,

p(Rj) 2 ]'1(R); '2(R)[: (1)

Without loss of generality, we suppose that j =2 f1; 2g, p(R1) = p(R), and p(R2) =

p(R). By successive applications of Lemma 4.2 we may assume that for all i 2

Nnf1; 2; jg, p(Ri) = p(Rj).

Let �R 2 RN be such that �RNnf2g = RNnf2g and �R2 = Rj. Thus, E( �R) =

E(RNnf2g). By Lemma 4.3, for all i 2 Nnf2g,

'( �R)Ri'(R): (2)
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Claim 1: '2( �R) = p( �R) = p(Rj).

Proof of Claim 1. Suppose that

'2( �R) < p(Rj): (3)

Let R0
j 2 R be such that p(R)P 0

j'2( �R) and p(R0
j) = p(Rj), and let �R0 = ( �RNnfjg; R

0
j).

By Lemma 4.4,

'( �R0) = '( �R): (4)

Let R0 = (RNnfjg; R
0
j). If p(Rj) 2 f'1(R

0); '2(R
0)g, then by Lemma 4.3, '2( �R

0) =

p(Rj), which contradicts (3) and (4). Hence, by (1), Pareto-optimality and replacement-

domination,9

'1(R
0) < p(Rj) < '2(R

0):

Thus, since p(R)P 0
j'2( �R) and by using (4),we obtain '(R

0)P 0
j'( �R

0), which contradicts

Lemma 4.3. �

Let ~R 2 RN be such that ~RNnf1g = RNnf1g and ~R1 = Rj. By the same arguments

as in Claim 1 it follows that '1( ~R) = p( ~R) = p(Rj). To summarize, Claim 1, the

previous fact, replacement-domination, and (1) imply that

'1( ~R) = p(Rj); p(Rj) < '2( ~R);

and

'1( �R) < p(Rj); '2( �R) = p(Rj):

Let �R1 2 RN be such that p( �R1
1) = p( �R), for all i 2 Nnf1g, p( �R1

i ) = p(Rj),

'1( �R) �P
1
2'2( ~R), and '2( ~R) �P

1
3'1( �R). Also, let �R2 2 RN be such that �R2

Nnf1g =
�R1
Nnf1g

and p( �R2
1) = p( ~R). By Lemma 4.4,

'( �R1) = '( �R) and '( �R2) = '( ~R): (5)

By de�nition of �R1
2 and �R1

3, '( �R) �P
1
2'( ~R) and '( ~R) �P 1

3'( �R). Since �R1
Nnf1g =

�R2
Nnf1g

and (5), the previous relations contradict replacement-domination. �

9Note that when N = f1; 2; 3g we cannot conclude '(R0) = '(R).
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The remaining proof of Theorem 3.3 is divided into two parts. In the �rst part

we show Theorem 3.3 when N contains three agents. In the second part we use the

three agents case to establish Theorem 3.3 for the general case.

Three Agents Case: N = f1; 2; 3g.

We show that ' satis�es anonymity and peaks-onliness.

Lemma 4.6 ' satis�es anonymity, i.e. for all permutations � of N , '(R) = '(�(R)).10

Proof. Let R 2 RN and � : N ! N be a permutation. If jfp(Ri) j i 2 Ngj 2 f1; 2g,

then the conclusion follows from Lemma 4.4. Suppose that p(R1) < p(R2) < p(R3).

By Lemma 4.5, either '1(R); '2(R) 2 [p(R1); p(R2)] or '1(R); '2(R) 2 [p(R2); p(R3)].

Without loss of generality, we suppose that

'1(R); '2(R) 2 [p(R1); p(R2)]:

Let �R = (R1; R2; R2). By Lemma 4.2, '( �R) = '(R). By Lemma 4.4, '(�( �R)) =

'( �R). Thus, by the two previous facts,

'(�( �R)) = '(R): (6)

Next, we determine '(�(R)). If '1(�(R)); '2(�(R)) 2 [p(R1); p(R2)], then '(�(R)) 2

E(R1; R2). Hence, by Lemma 4.2, '(�(R)) = '(�( �R)). By (6), '(�(R)) = '(R),

which is the desired conclusion.

Suppose that '2(�(R)) > p(R2). Thus, by Lemma 4.5, '1(�(R)) � p(R2). Let

~R = (R2; R2; R3). Thus, by Lemmas 4.2 and 4.4, '( ~R) = '(�(R)). We distinguish

three subcases.

Subcase 2.1: '1(R) = '2(R) = p(R2).

By Lemma 4.2, '( ~R) = '(R). By Lemma 4.4, '( ~R) = '(�(R)). The previous

two equalities contradict '(R) 6= '(�(R)).

Subcase 2.2: '2(R) < p(R2) < '1(�(R)).

Then '( �R) = '(R) and '( ~R) = '(�(R)). Using the same arguments as in the

proof of Lemma 4.5 we derive a contradiction to replacement-domination.

Subcase 2.3: '2(R) = p(R2) (or p(R2) = '1(�(R))).

10As usual, �(R) is the permuted pro�le R according to �.
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By Subcase 2.1, '1(R) < p(R2). By Lemma 4.3, '( ~R)R2'(R). Thus, '1( ~R) =

p(R2). By Lemma 4.4, '( ~R) = '(�(R)). Thus, p(R2) < '2( ~R). Hence, by '( �R) =

'(R), '1( �R) < '2( �R) = p(R2) = '1( ~R) < '2( ~R). Using the same arguments as in

the proof of Lemma 4.5 we derive a contradiction to replacement-domination. �

Using similar arguments as in Lemma 4.6 it follows that ' satis�es peaks-onliness.

Lemma 4.7 ' satis�es peaks-onliness, i.e. for all R; �R 2 RN , if for all i 2 N ,

p(Ri) = p( �Ri), then '(R) = '( �R).

We construct a function f 2 F and show that ' = �f . Before we de�ne f we

introduce additional notation. Given x 2 [0; 1], Rx 2 RN denotes a preference pro�le

such that p(Rx
1) = 0, p(Rx

2) = x, and p(Rx
3) = 1. Pareto-optimality implies that

'1(R
0) = 0 or '2(R

0) = 1. Without loss of generality, we suppose that '1(R
0) = 0.

The case '2(R
0) = 1 is symmetric by interchanging the roles of '1(R

0) and '2(R
0).

De�ne b � '2(R
0) and the function f : [0; b]! [0; b] as follows.11

De�nition of f : For all x 2 [0; b], when x < '2(R
x), f(x) � '2(R

x), and when

x � '2(R
x), f(x) � '1(R

x).

We prove in three subsequent lemmas that f 2 F .

Lemma 4.8 For all x 2 [0; b], f(x) 2 [0; b].

Proof. Let x 2 [0; b]. By Lemma 4.5, for all i 2 N , p(Rx
i ) =2 ]'1(R

x); '2(R
x)[. Thus,

if '2(R
x) 2 ]b; 1], then '1(R

x) 2 [x; 1]. Hence, '(R0)P 0
1'(R

x) and '(Rx)P 0
3'(R

0), a

contradiction to replacement-domination. Thus, f(x) 2 [0; b]. �

Lemma 4.9 If x < x0, then f(x) > f(x0). Moreover, f = f�1.

Proof. By Lemma 4.5, Lemma 4.8, and replacement-domination, for all x 2 ]0; b[,

f(x) 2 ]0; b[. Thus, by Lemma 4.5, Pareto-optimality, and the de�nition of b, for all

x 2 [0; b],

'1(R
x) = x or '2(R

x) = x: (7)

11When '1(R
0) > 0, we de�ne b � '1(R

0) and a function f : [b; 1]! [b; 1].
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Let x; x0 2 [0; b] be such that x < x0. Without loss of generality, we suppose that

'1(R
x) = x. Thus, '2(R

x) � x. If x0 = '2(R
x), then Lemma 4.5, replacement-

domination and (7) imply '(Rx) = '(Rx0

). Hence, by de�nition of f , f(x0) = x <

x0 = f(x). If x0 2 ]x; '2(R
x)[, then by (7), x0 2 f'1(R

x0

); '2(R
x0

)g. Thus, by

replacement-domination, '1(R
x0

); '2(R
x0

) 2 ]x; '2(R
x)[ and f(x0) < '2(R

x) = f(x).

If x0 2 ]'2(R
x); b], then by (7), x0 2 f'1(R

x0

); '2(R
x0

)g. Thus, by replacement-

domination, '1(R
x0

) < x and x0 = '2(R
x0

). By de�nition of f , f(x0) = '1(R
x0

) <

x � f(x). Hence, f is strictly decreasing.

Since f is strictly decreasing, then f�1 is well-de�ned. For the second part, let

x 2 [0; b]. By (7) and the de�nition of f , (x; f(x)) = '(Rx) or (f(x); x) = '(Rx). By

(7), f(x) 2 f'1(R
f(x)); '2(R

f(x))g. Hence, by replacement-domination, '(Rf(x)) =

'(Rx). Thus, f(x) = f�1(x), the desired conclusion. �

Lemma 4.10 The function f is continuous.

Proof. It su�ces to prove that f is left-continuous and right-continuous. We only

show that f is left-continuous. Right-continuity can be similarly shown. Let x 2

[0; b] and (xk)k2N be a strictly increasing sequence converging to x. By Lemma 4.9,

(f(xk))k2N is a strictly decreasing sequence. Let �x � limk!1 f(xk). If (f(xk))k2N

does not converge to f(x), then, by Lemma 4.9, f(x) < �x. We distinguish two cases.

Case 1: x � f(x).

Consider R
1

2
(f(x)+�x). By (7) in the proof of Lemma 4.9,

1

2
(f(x) + �x) 2 f'1(R

1

2
(f(x)+�x)); '2(R

1

2
(f(x)+�x))g:

Thus, by replacement-domination, '1(R
1

2
(f(x)+�x)) < x. Hence, for some k 2 N , xk 2

]'1(R
1

2
(f(x)+�x)); x[. Thus, f(xk) > �x > '2(R

1

2
(f(x)+�x)). Because '(Rxk) = (xk; f(xk))

it follows that '(R
1

2
(f(x)+�x)))P xk

1 '(Rxk) and '(Rxk)P xk
3 '(R

1

2
(f(x)+�x))), which contra-

dicts replacement-domination.

Case 2: x > f(x).

Let " > 0 be such that f(x) + " < minf�x; xg. By (7),

f(x) + " 2 f'1(R
f(x)+"); '2(R

f(x)+")g:

14



Thus, by replacement-domination, '2(R
f(x)+") < x. Hence, for some k 2 N , xk 2

]'2(R
f(x)+"); x[. By our choice of ", f(xk) > f(x) + ". Because '(Rxk) = (xk; f(xk))

it follows that '(Rf(x)+")P xk
1 '(Rxk) and '(Rxk)P xk

3 '(Rf(x)+"), which contradicts

replacement-domination. �

By Lemmas 4.8, 4.9, and 4.10, f 2 F . Let a 2 [0; b] be such that f(a) = a. The

following lemma completes the proof of Theorem 3.3 for the three agents case.

Lemma 4.11 ' = �f .

Proof. Let R 2 RN . By anonymity, we may suppose that p(R1) � p(R2) � p(R3).

We distinguish three cases.

Case 1: a 2 [p(R); p(R)].

Without loss of generality, we suppose that for some j 2 N , �f(R) = (p(Rj); f(p(Rj))).

Thus, j 2 f1; 2g. If j = 1, then

'(Rp(R1)) = '(R3; R
p(R1)
f2;3g ) = '(R3; R

p(R1)
2 ; R2) = '(R);

where the �rst equality follows from replacement-domination and f(p(R1)) � p(R3),

the second from replacement-domination and p(R2) =2 ]p(R1); f(p(R1))[, and the

third from anonymity and peaks-onliness. Thus, by de�nition of f and �f , �f(R) =

�f(Rp(R1)) = '(Rp(R1)) = '(R), the desired conclusion.

Let j = 2. Then by replacement-domination, f(p(R2)) � p(R3), anonymity, and

peaks-onliness,

'(Rp(R2)) = '(R3; R
p(R2)
f2;3g ) = '(Rp(R2)

3 ; R2; R3): (8)

By Lemma 4.9, f = f�1 and '(Rp(R2)) = '(Rf(p(R2))). Thus, by using the same

arguments as above and p(R1) � p(R2) = '1(R
f(p(R2))),

'(Rp(R2)) = '(Rf(p(R2))) = '(R
f(p(R2))
f1;2g ; R1) = '(R2; R

f(p(R2))
2 ; R1) = '(R1; R2; R

f(p(R2))
2 ):

(9)

Now by (8), (9), and replacement-domination, '(Rp(R2)) = '(R). Thus, by de�nition

of f and �f , �f(R) = �f(Rp(R2)) = '(Rp(R2)) = '(R), the desired conclusion.
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Case 2: p(R) < a.

Let �R 2 RN be such that p( �R2) = 1 and �RNnf2g = RNnf2g. By Case 1, '( �R) =

(p(R); f(p(R))). Let �R0 2 RN be such that p( �R0
2) = p( �R1) and �R0

Nnf2g = �RNnf2g.

By Lemma 4.3, for all i 2 Nnf2g, '( �R0) �Ri'( �R). Hence, by peaks-onliness, '( �R0) =

(p( �R); p( �R)). Thus, by replacement-domination,

'(R) = '( �R0) = (p(R); p(R)) = �f (R);

the desired conclusion.

Case 3: a < p(R).

If p(R) 2 ]a; b], then the same proof of Case 2 yields the desired conclusion.

Let p(R) 2 ]b; 1]. Let �R 2 RN be such that p( �R2) = b and �RNnf2g = RNnf2g.

By the previous fact, '( �R) = (b; b). Since b < p(R), Pareto-optimality implies

'(R) �P3'( �R). Thus, by replacement-domination and peaks-onliness, '1(R) = p(R).

Suppose that '2(R) > p(R). Let R0 2 RN be such that p(R0
2) =

1
2
(p(R) + '2(R))

and R0
Nnf2g = RNnf2g. By the previous argument, '1(R

0) = p(R). Hence, by Lemma

4.5, '2(R
0) � p(R0

2) < '2(R). Thus, '(R
0)P1'(R) and '(R)P3'(R

0), a contradiction

to replacement-domination. Therefore,

'(R) = (p(R); p(R)) = �f(R);

the desired conclusion. �

General Case: N = f1; : : : ; ng and n � 4.

Let ~N � f1; 2; 3g. We associate with ' a rule ~' : R
~N ! [0; 1]M de�ned for three

agents in the following way. For all ~R 2 R
~N , let

~'( ~R) � '( ~R1; ~R2; ( ~R3)i2Nnf1;2g):

Obviously ~' inherits Pareto-optimality from '.

Lemma 4.12 ~' satis�es replacement-domination.

Proof. Let j 2 ~N and R;R0 2 R
~N be such that R ~Nnfjg = R0

~Nnfjg
. If j 2 f1; 2g, then

the assertion follows from replacement-domination of '. Let j = 3. By de�nition of

~', n � 4, and Lemma 4.4, it follows that

~'(R) = '(R1; R2; (R3)i2Nnf1;2g) = '(R1; (R2)i2Nnf1;3g; R3) (10)
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and (by R ~Nnf3g = R0
~Nnf3g

)

~'(R0) = '(R1; R2; (R
0
3)i2Nnf1;2g) = '(R1; (R2)i2Nnf1;3g; R

0
3): (11)

Hence, by (10) and (11), ~' inherits replacement-domination from '. �

Because ~' satis�es Pareto-optimality and replacement-domination, the three agents

case implies that there exists f 2 F such that ~' = ~�f (where ~�f : R
~N ! [0; 1]M).

Let R 2 RN . Then by Pareto-optimality and Lemma 4.5 there exists j 2 N

such that p(Rj) 2 f'1(R); '2(R)g. Let k; h 2 N be such that p(Rk) = p(R) and

p(Rh) = p(R). Let �R 2 RN be such that �Rfj;k;hg = Rfj;k;hg and for all i 2 Nnfj; k; hg,

�Ri = Rj. Successive application of Lemma 4.2 yields '( �R) = '(R). Let ~R 2 RN be

such that ~R1 = �Rj, ~R2 = �Rk, and for all i 2 Nnf1; 2g, ~Ri = �Rh. Because n � 4,

jfp( �Ri) j i 2 Ngj � 3, and fp( �Ri) j i 2 Ng = fp( ~Ri) j i 2 Ng, Lemma 4.4 yields

'( ~R) = '( �R). Hence, '(R) = '( ~R).

Now by de�nition, '( ~R) = ~'( ~Rf1;2;3g). Thus, by ~' = ~�f and '(R) = '( ~R),

'(R) = ~�f( ~Rf1;2;3g). Because �f : RN ! [0; 1]M satis�es anonymity and for all i 2

Nnfj; k; hg, p(Ri) 2 [p(R); '1(R)][['2(R); p(R)], it follows that �
f(R) = ~�f( ~Rf1;2;3g).

Hence, '(R) = �f(R) and ' = �f , the desired conclusion.
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Figure 1: The preference R1 is symmetric around the peak 0:5. The shaded area

is the weak upper contour set at (0.2,0.6) when we extend R1 lexicographically.

Note that the dotted line segments [0; 0:2[�f0:4g, [0; 0:2[�f0:6g, f0:4g�]0:8; 1], and

f0:6g�]0:8; 1] do not belong to this upper contour set. Furthermore, the four bullet

points (0.2,0.4), (0.2,0.6), (0.4,0.8), and (0.6,0.8) are all alternatives in [0; 1]M that

are indi�erent to (0.2,0.6).
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Figure 2: Illustration of Case (c) when j = l in Example 3.2.
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