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RÉSUMÉ

Dans cet article, nous proposons des procédures d’inférence valides à distance finie

pour des modèles autorégressifs (AR) stationnaires et non stationnaires. La méthode

suggérée est fondée sur des propriétés particulières des processus markoviens

combinées à une technique de subdivision d’échantillon. Les résultats sur les processus

de Markov (indépendance intercalaire, troncature) ne requièrent que l’existence de

densités conditionnelles. Nous démontrons les propriétés requises pour des processus

markoviens multivariés possiblement non stationnaires et non gaussiens. Pour le cas des

modèles de régression linéaires avec erreurs autorégressives d’ordre un, nous montrons

comment utiliser ces résultats afin de simplifier les propriétés distributionnelles du modèle

en considérant la distribution conditionnelle d’une partie des observations, étant donné le

reste. Cette transformation conduit à un nouveau modèle qui a la forme d’une

autorégression bilatérale à laquelle on peut appliquer les techniques usuelles d’analyse

des modèles de régression linéaires. Nous montrons comment obtenir des tests et régions

de confiance pour la moyenne et les paramètres autorégressifs du modèle. Nous

proposons aussi un test pour l’ordre d’une autorégression. Nous montrons qu’une

technique de combinaison de tests obtenus à partir de plusieurs sous-échantillons peut

améliorer la performance de la procédure. Enfin, la méthode est appliquée à un modèle de

l’investissement aux États-Unis.

Mots clés : séries chronologiques, processus de Markov, processus autorégressif,

autocorrélation, modèle dynamique, modèle à retards échelonnés,

autorégression bilatérale, indépendance intercalaire, test exact, Ogawara-

Hannan, investissement



ABSTRACT

In this paper, we develop finite-sample inference procedures for stationary and

nonstationary autoregressive (AR) models. The method is based on special properties of

Markov processes and a split-sample technique. The results on Markovian processes

(intercalary independence and truncation) only require the existence of conditional

densities. They are proved for possibly nonstationary and/or non-Gaussian multivariate

Markov processes. In the context of a linear regression model with AR(1) errors, we show

how these results can be used to simplify the distributional properties of the model by

conditioning a subset of the data on the remaining observations. This transformation leads

to a new model which has the form of a two-sided autoregression to which standard

classical linear regression inference techniques can be applied. We show how to derive

tests and confidence sets for the mean and/or autoregressive parameters of the model.

We also develop a test on the order of an autoregression. We show that a combination of

subsample-based inferences can improve the performance of the procedure. An

application to U.S. domestic investment data illustrates the method.

Keywords : time series, Markov process, autoregressive process, autocorrelation,

dynamic model, distributed lag model, two-sided autoregression, intercalary

independence, exact test, finite-sample test, Ogawara-Hannan, investment
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1. Introduction

The presence of nuisance parameters is a crucial problem when making inference on the parameters
of a dynamic model. Typically test statistics have distributions which depend on those nuisance pa-
rameters so that they are difficult to interpret. A first approach to solve this difficulty consists in find-
ing consistent estimates of the nuisance parameters which are then substituted for these parameters
in the distribution of the statistic considered. However it is well known that such approximations
can be arbitrarily bad; see Park and Mitchell (1980), Miyazaki and Griffiths (1984) and DeJong,
Nankervis, Savin, and Whiteman (1992) for examples in the context of AR processes, Burnside and
Eichenbaum (1994, 1996) about Wald-type tests based on GMM estimators, Dufour (1997) for a
more general treatment of asymptotic approximation failures in the case of Wald statistics, Savin
and Würtz (1996) for a similar discussion in the case of logit models, and Maasoumi (1992) for
some general criticisms. Consequently, when hypothesis testing is the main objective, such a pro-
cedure offers no guarantee that the level constraint in the sense of Neyman-Pearson [see Lehmann
(1986, p. 69) and Gouriéroux and Monfort (1989, p. 14)] be satisfied. This also makes comparisons
between testing procedures difficult.

A second approach consists in using bounds which typically lead to conservative tests. Suppose
the true critical value for our test statistic is unknown, but that it is possible to find bounds on
this value, most importantly a bound yielding a critical region whose probability under the null
hypothesis is not larger (but could be smaller) than the stated level of the test. For some examples of
such methods in time series models, see Vinod (1976), Kiviet (1980) and Hillier and King (1987).
In these cases, the bounds appear to increase without limit when the nuisance parameters approach
some boundary (e.g., the stationarity frontier in the case of ARMA processes) and/or with the sample
size so they become useless [see Dufour and Torrès (1998)]. For regression models with AR(1)
disturbances, procedures which do not display this unattractive feature were proposed in Dufour
(1990); for further examples of such techniques, see also Dufour (1989), Dufour and Kiviet (1996,
1998), Campbell and Dufour (1997), Dufour, Hallin, and Mizera (1998), and Kiviet and Dufour
(1997). However, these methods appear difficult to extend to more complex dynamic models such
as AR(p) processes, p ≥ 2.

In this paper, we propose an exact inference procedure for the parameters of Markov processes.
It is based on extending old but little known results stated by Ogawara (1951) for univariate station-
ary Gaussian AR(p) process. Note Ogawara’s article does not contain the proof of the result, and
such a demonstration does not appear to be available elsewhere. The procedure has been extended
by Hannan (1956) to multivariate, stationary, Gaussian processes admitting a VAR(1) representa-
tion. In the two latter references, procedures are developed for making inference on the autocorre-
lation parameters of pure AR processes. Hannan (1955a, 1955b) also showed this method can be
applied to test a hypothesis on the coefficients of a linear regression model with stationary AR(1)
errors.

In this paper, we generalize and improve these results in several directions. First, the initial
results of Ogawara (1951) are extended to a larger class of processes, which includes multivariate,
possibly non-normal, integrated or explosive processes. In particular, for general Markov processes
of order p, it is shown that the variables separated by lags of p periods are mutually independent

1



conditional on the intercalary observations (intercalary independence), a rather surprising property
which is certainly of interest by itself. Second, we consider a more general class of models and
hypotheses which includes as special cases all the models previously treated in the earlier literature
[Ogawara (1951), Hannan (1955a, 1955b, 1956) and Krishnaiah and Murthy (1966)]. In particu-
lar, although this procedure was originally designed to make inference on the mean of a dynamic
model, we show it is also suitable for inference on the nuisance parameters, such as autoregres-
sive coefficients. Furthermore, we develop a procedure for constructing confidence regions. Third,
we propose a way of resolving the information loss due to the application of the Ogawara-Hannan
procedure. Fourth, we provide simulations results to evaluate the performance of our method.

Our procedure involves several steps. First, the sample is split into several subsets of observa-
tions. Next, on conditioning the original model on one of these subsamples, a transformed model
having the form of a two-sided autoregression is obtained, i.e., the dependent variable is regressed
on its own leads and lags. This transformed model has simpler distributional properties and allows
one to apply standard fixed regressor techniques. This is repeated for each subsample. Then a pool-
ing method described in Dufour and Torrès (1998) is used to combine the results of subsample-based
inferences and obtain a single answer based on the whole sample.

The procedures are quite easy to implement, for they only require applying standard test proce-
dures (Student, Fisher, χ2) to a transformed model. This means that there is no need to establish
special critical points. The method is flexible enough to be easily adaptable to a wide variety of
dynamic and econometric models. In particular, we show it can easily be adapted to various setups,
such as: (1) integrated and explosive processes; (2) multidimensional processes (VAR models); (3)
various models with more general dynamic structures

The paper is organized as follows. In Section 2, we motivate and expose the procedures devel-
oped in this paper in the context a simple AR(1) model with a deterministic trend. In particular,
we demonstrate how to use a number of general results on Markov processes which are exposed in
Section 3. In Section 4, we discuss in detail how these results can be applied to obtain finite sample
inference procedures in the context of an AR(1) process. In Section 5, we consider a more general
model by introducing a drift function in the AR(1) model. In particular, we explicitly show how one
can obtain an exact test on the mean parameters and the autoregressive coefficients. We also derive
an exact test for the order of an autoregression. In Section 6, we propose a method for improving
the performance of Ogawara’s procedure and we present simulation results. We conclude in Section
7. The proofs appear in the Appendix.

2. An introductory example

As an example of the procedures presented in this paper, consider the following AR(1) model

Yt = mt + λYt−1 + ut , withmt = b0 + b1t , t = 1, 2, . . . , T, (2.1)

where u1, ... , uT are independent and identically distributed (i.i.d.) according to a N(0, σ2) distri-

bution [henceforth denoted ut
i.i.d.∼ N(0, σ2), t = 1, . . . , T ].

Because such a model is recognized for describing well the dynamic behavior of many economic
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time series, a large part of the econometrics literature has been devoted to estimating it and making
inferences on its parameters. One of the most investigated issue consists in testing the unit root
hypothesis H0 : λ = 1. Most of the (now) standard test procedures proposed in the literature use
an OLS estimate λ̂T of λ to form a statistic which is usually a normalized version of λ̂T − 1. The
non-standard asymptotic distribution of this statistic is used to define a critical region for H0. As
mentioned in Section 1, the lack of reliability of such procedures is well documented. We propose
here a simple approach which avoids the use of asymptotic approximations and provides tests and
confidence regions having the stated level. Although the procedure presented in this paper goes
much beyond this single issue, we illustrate it in the context of the simple AR(1) model (2.1) where
we wish to test H0 : λ = 1. For the sake of simplicity, we assume the sample size is odd, so that T
may be written T = 2n+ 1, for some strictly positive integer n.

The method may then be described as follows. The results of this paper entail the follow-
ing properties: (1) conditionally on Φodd = (Y1, Y3, . . . , Y2n+1)′, the remaining observations
Y2, Y4, . . . , Y2n are mutually independent [see Theorem 3.1]; (2) the conditional distribution of
Y2t given Φodd is identical to the conditional distribution of Y2t conditional on (Y2t−1, Y2t+1) [see
Theorem 3.2]. In particular, for any t = 1, 2, . . . , n, the mean of this conditional distribution is
E(Y2t|Y2t−1, Y2t+1) = β1m2t + β2m2t+1 + β(Y2t−1 + Y2t+1), so that we may write

Yt = β1mt + β2mt+1 + β(Yt−1 + Yt+1) + ηt

or, using the expression of mt,

Yt = a0 + a1t+ β(Yt−1 + Yt+1) + ηt (2.2)

for t = 2, 4, . . . , 2n. The coefficients a0, a1 and β can be shown to be the following transformations
of the initial parameters:

a0 = b0

(
1 − λ
1 + λ2

)
− b1

(
λ

1 + λ2

)
, a1 = b1

(
1 − λ
1 + λ2

)
, β =

λ

1 + λ2 . (2.3)

Further, the error terms η2, η4, . . . , η2n, are i.i.d. N(0, σ2
1), conditionally on Φodd. Now, it is inter-

esting to note that (2.2) enjoys all the properties of a standard linear regression model with Gaus-
sian i.i.d. errors. Therefore, any linear hypothesis on its coefficients may be tested with usual
procedures. In particular, H0 : λ = 1 in (2.1) may be reformulated as a linear restriction on the
parameters of (2.2), namely H(a)

0 : (a1 = 0 and β = 1/2). A simple Fisher procedure gives a

critical region with any required level α for H(a)
0 .

To illustrate the procedure, we propose the following numerical example. Following Dufour
and Kiviet (1998), a model similar to (2.1) describes the dynamics of the (logarithm of) US gross
private domestic investment in non-residential structures over the period 1952:I to 1969:IV [see
Berndt (1991, p. 278) for a detailed description of the data]. The model is

Yt = b0 + b1t/100 + λYt−1 +mt + ut . (2.4)
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When the latter is estimated by OLS, we obtain: λ̂ = 0.92143, b̂0 = 0.87197, b̂1 = 0.06986 with
unbiased error variance estimator s2 = 4.92300 × 10−4. λ̂ being close to 1, one may wish to test
for the presence of a unit root in the AR polynomial. According to the discussion above, one would
estimate the transformed model similar to (2.2)

Yt = a0 + a1t/100 + β(Yt+1 + Yt−1) + ηt , t = 2, 4, . . . , 70 , (2.5)

where a0, a1 and β are given by (2.3), and test H(a)
0 : (a1 = 0 and β = 1/2). Rewriting the null

hypothesis under the form H(a)
0 : Rδ − r = 0 where

R =

(
0 1 0

0 0 1

)
, δ = (a0, a1, β)′, r = (0, 1/2)′,

the unit root hypothesis may then be tested at any level α by forming the statistic F1 = (Rδ̂1 −
r)′[RV̂ (δ̂1)R′]−1(Rδ̂1 − r) and using the critical region F1 ≥ F (2, 31; 1 − α). Here δ̂ denote
the vector of the OLS estimates of the components of (a0, a1, β)′ in (2.5), V̂ (δ̂1) is the usual
(“unbiased”) estimator of the variance-covariance matrix of δ̂1, and F (2, 31; 1 − α) is the (1 −
α) quantile of the Fisher distribution with (2, 31) degrees of freedom. Computations yield the
following results:

δ̂1 =

 0.17965
0.00883
0.49191

 , V̂ (δ̂1) =

 0.21226 0.01775 −0.00968
· 0.00163 −0.00081
· · 0.00044

 , F1 = 0.211179 .

The p-value associated with F1 is 0.8107842 so that H(a)
0 is accepted at any level less than

81.07842%.
In our example, the transformed model (2.2) [or (2.5)] uses Y2, Y4, . . . , Y2n, as dependent vari-

ables and Y1, Y3, . . . , Y2n+1, as the conditioning variables. Obviously, the results we used for
writing (2.2) may also be applied when Φeven = (Y2, Y4, . . . , Y2n)′ are the conditioning variables.
Another transformed model is then

Yt = a0 + a1t+ β(Yt−1 + Yt+1) + νt , t = 3, 5, . . . , 2n − 1 . (2.6)

The error terms ν3, ν5, , . . . , ν2n−1 are independent N(0, σ2
1) conditionally on Φeven and (2.6) pro-

duces another critical region with level α forH(a)
0 .Back to the US gross private domestic investment

in non-residential structures example, OLS estimation of

Yt = a0 + a1t/100 + β(Yt+1 + Yt−1) + νt , t = 3, 5, . . . , 71 , (2.7)
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yields

δ̂2 =

 −0.49970
−0.03342

0.52265

 , V̂ (δ̂2) =

 0.31227 0.02587 −0.01423
· 0.00234 −0.00118
· · 0.00065

 , F2 = 0.563799

with a p-value of 0.5747689 for F2.

The tests based on F1 and F2 both agree on accepting H(a)
0 at level 5% so that we would be

tempted to accept the null at the same level of 5%. However, the decision rule which consists of
accepting the null hypothesis when m ≥ 2 tests accept it each at level α has a level which is larger
to α. Such a method is the well known induced test procedure [see Savin (1984)] which combines
several results from separate (although not necessarily independent) inferences. A sufficient con-
dition ensuring it has level α is that each one of the m tests which are combined has level α/m
[see Savin (1984) and Dufour and Torrès (1998) for further details]. In model (2.1), we accept
H0 : λ = 1 at level α whenever the tests based on (2.2) and (2.6) both accept (at level α/2) the

hypothesis H(a)
0 : a1 = 0 and β = 1/2. In terms of p-values, this criterion can be reformulated as

follows: we reject H0 : λ = 1 at level α when the minimum of the p-values obtained from (2.2)
and (2.6) is smaller than α/2.When applied to the US investment data, it is easy to see that the null
hypothesis of a unit root is accepted at level 5% for instance.

The procedure just described is very simple as it only requires standard tabulated distribution.
Its steps can be summarized as follows. The initial model expresses the conditional mean of a
Markov process, typically Yt = E(Yt|Yt−1) + ut. By using properties of such processes, we are
able to transform the initial model by first splitting the sample into two subsets of variables, and
then writing the conditional mean of the variables in the first subset given some of the variables in
the second subset. This leads to several transformed models such as Yt = E(Yt|Yt−1, Yt+1) + uit,
t ∈ Ji, i = 1, 2, for instance, where J1 and J2 are collections of indices defining the two subsets of
variables. The testing procedure exploits the fact that, due to some properties of Markov processes,
these transformed models are standard linear regressions for which usual inference techniques apply.

In the next section, we present extensions of the theoretical results of Ogawara (1951) and
Hannan (1956). These results establish the properties of Markov processes on which the inference
procedures proposed rely.

3. Results on Markov processes

3.1. Notation

Let {Xt : t ∈ T} be a stochastic process on a probability space (Ω, F , P) with trajectories in
R

m, i.e. X(ω, t) ≡ (X1(ω, t),X2(ω, t), . . . ,Xm(ω, t)
)′
, m ≥ 1, t ∈ T, where T is an interval

of the integers Z. The symbol “≡” means “equal by definition”. We assume that for all t ∈ T, the
probability law of Xt has density fXt with respect to the Lebesgue measure on Rm (the Borel σ-
algebra of subsets of R

m). For any random vector Φ of conditioning variables, we denote fXt|Φ(x|φ)
the conditional density of Xt given Φ = φ, evaluated at x ∈ R

m.
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It will be useful to introduce the following notations. Let p and n be two positive integers
(p ≥ 1, n ≥ 1).We consider the stochastic process {Xt : t ∈ T} and define:

Bt,p ≡ (Xt−1,Xt−2, . . . ,Xt−p) =
(
Xt−τ : 1 ≤ τ ≤ p) , bt,p ≡ (xt−τ : 1 ≤ τ ≤ p) ,

for p+ 1 ≤ t ≤ (n+ 1)(p + 1), and

At,p ≡ (Bs(p+1),p : t ≤ s ≤ n+ 1
)
, at,p ≡ (bs(p+1),p : t ≤ s ≤ n+ 1

)
, for 1 ≤ t ≤ n+ 1 ,

where we assume the set T contains 1 and (n + 1)(p + 1) − 1. In other words, Bt,p denotes the
set of p variables immediately preceding Xt, and At,p is a collection of Bs,p sets. We can give the
following illustration of the way we split the variables in {Xt : t ∈ T} :

Xt(p+1)−p,Xt(p+1)−p+1, . . . ,Xt(p+1)−1︸ ︷︷ ︸
Bt(p+1),p

, Xt(p+1) , X(t+1)(p+1)−p,X(t+1)(p+1)−p+1, . . . ,X(t+1)(p+1)−1︸ ︷︷ ︸
B(t+1)(p+1),p

The following notation will provide a convenient shortcut: for any t ∈ T, we set

Xt, . . .(r) . . . ,Xt+kr ≡ (Xt,Xt+r,Xt+2r , . . . ,Xt+kr)

for any positive integers r and k such that t + kr ∈ T. With this notation, we may now give the
main definition.

Let {Xt : t ∈ T} be a stochastic process and p a positive integer. We say that {Xt : t ∈ T}
is a Markov process of order p on T (or {Xt : t ∈ T} is Markovian of order p on T) if it satisfies
condition M(p) defined as follows:

M(p) : fXt|Xt−k,...(1)... ,Xt−1
= fXt|Xt−p,...(1)... ,Xt−1

, ∀k ∈ N, ∀t ∈ T, with t− k ∈ T and k ≥ p.
(3.1)

Note that, for T = Z and p = 1, we have the standard definition of a Markov process.
Let X and Y be two random vectors of dimension q and r, respectively. Whenever the relevant

moments exist, the affine regression of X on Y is the random vector of size q, denoted EL(X|Y ),
whose i-th component is the orthogonal projection of Xi on the space spanned by the affine func-
tions of Y (an affine function of Y is a linear combination of the elements of Y plus possibly a
constant). IfW is another random vector, X⊥Y |W means that the residuals from the affine regres-
sions of X and Y onW are uncorrelated, i.e. E

[
X − EL(X|W )][Y − EL(Y |W )]′

]
= 0 .

3.2. Intercalary independence and truncation properties

The procedures presented in Ogawara (1951) and Hannan (1955a, 1955b, 1956) exploit special
properties of Markov processes (intercalary independence, truncation), which we now study in de-
tail and generalize. The propositions below will be used to build a transformed model that satisfies
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the assumptions of the classical linear model on which standard inference techniques can be ap-
plied. Further they provide interesting insights on the structure of Markovian processes, and thus
have interest by themselves. The intercalary independence property was apparently first given with-
out proof by Ogawara (1951) for univariate Markov processes, while the truncation property was
used implicitly by him (again without proof) in the context of univariate autoregressive stationary
Gaussian processes. Ogawara (1951) notes that these results have been stated without proof in Lin-
nik (1949). However no proof is given by Ogawara (1951) nor (apparently) by any other author. In
this section, we demonstrate and extend these results to multivariate Markov processes of order p,
allowing for non-stationarity and non-normality. In order to keep things as simple as possible, we
shall assume that the time index set T contains the positive integers N : T ⊇ N = {1, 2, . . . }.

The first result we state (intercalary independence for Markov processes of order p) is an exten-
sion of Theorems 1 and 2 of Ogawara (1951). The proofs are given in the Appendix.

Theorem 3.1 INTERCALARY INDEPENDENCE. Let {Xt : t ∈ T} be a stochastic process satis-
fying condition M(p), with T ⊇ N. Then for any positive integer n, Xp+1,X2(p+1), . . . ,Xn(p+1)

are mutually independent, conditionally on A1,p.

Consider a dynamic model of the form

Xt = g1,t(Zt,Xν , . . .(1) . . . ,Xτ ) + εt , t = 1, 2, . . . , T ≡ n(p+ 1) + p (3.2)

where {Xt : t ∈ T} is anm-dimensional Markov process of order p on T ≡ {1, 2, ..., n(p+1)+p},
and 1 ≤ ν ≤ τ ≤ t− 1. If {Xt : t ∈ T} is Markovian of order p, we have t− 1 ≥ τ ≥ ν ≥ t− p.
Zt is a vector of fixed exogenous variables, εi,t

i.i.d.∼ N(0, σ2
i ), i = 1, 2, . . . ,m, and g1,t is a

deterministic function in R
m. If we condition (3.2) on A1,p, we obtain a conditional model

Xt(p+1) = g2,t(Zt(p+1), A1,p) + ηt(p+1) , t = 1, 2, . . . , n , (3.3)

in which, according to Theorem 3.1, the endogenous variables are independent and

E(ηt(p+1)|A1,p) = 0 , t = 1, 2, . . . , n .

We achieve the independence at the expense of a larger number of variables in the conditional mean
ofXt(p+1) (A1,p instead ofXν , . . .(1) . . . ,Xτ ). However, by the following theorem, we can restrict
ourselves to consider a more parsimonious model which is distributionally equivalent to (3.3).

Theorem 3.2 TRUNCATION PROPERTY. Let {Xt : t ∈ T} be a stochastic process satisfying
condition M(p) with T ⊇ N. Then

fXt(p+1)|A1,p
= fXt(p+1)|B(t+1)(p+1),p,Bt(p+1),p

for any t = 1, 2, . . . , n, ∀n ∈ N.

Note only the Markov property of the process is needed to establish these results. In particular,
stationarity and/or normality are not required. The above theorem extends a result stated without
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proof by Ogawara (1951) in the context of a univariate, stationary, Gaussian Markov process of
order p. For completeness, we state the latter as a corollary.

Corollary 3.3 INTERCALARY INDEPENDENCE FOR GAUSSIAN PROCESSES. Let {Xt : t ∈ Z}
be a (multidimensional) Gaussian Markov process of order p (p ≥ 1). Then Theorems 3.1 and 3.2
hold for {Xt : t ∈ Z} .

To see the latter corollary, we simply note that for any t, fXt|X−∞,...(1)... ,Xt−1
=

fXt|Xt−p,...(1)... ,Xt−1
⇒ fXt|Xt−s,...(1)... ,Xt−1

= fXt|Xt−p,...(1)... ,Xt−1
, for any s ≥ p. Theorems 3.1

and 3.2 extend the results used by Ogawara to a larger class of processes. Theorem 3.2 shows that,
if {Xt : t ∈ T} is Markovian of order p, variables other than those in Bt(p+1),p and B(t+1)(p+1),p

do not appear in the conditional density of Xt(p+1) given A1,p. For example in (3.3), this suggests
we can limit ourselves to consider a simpler equivalent model where Xt(p+1) only depends on the
adjacent variables B(t+1)(p+1),p and Bt(p+1),p , instead of the complete set A1,p :

Xt(p+1) = gt(Zt(p+1), B(t+1)(p+1),p, Bt(p+1),p) + ηt(p+1) , t = 1, 2, . . . , n, (3.4)

where theXt(p+1)’s are (conditionally) independent. The function gt( · ) in (3.4) may be interpreted
as the “best approximation” (projection) of Xt(p+1) on the space spanned by (possibly nonlinear)
functions of the variables in Bt(p+1),p and B(t+1)(p+1),p. Corollary 3.5 below gives a sufficient
condition for such “projections” to be invariant with respect to t, e.g., to have gt( · ) = g( · ), for all
t = 1, 2, . . . , n.We first need to introduce the following definition.

Definition 3.4 CONDITIONAL STRICT STATIONARITY OF ORDER p. Let {Xt : t ∈ T} be a
stochastic process on T ⊇ N. We say that {Xt : t ∈ T} is conditionally strictly stationary of order
p [denoted CSS(p)] if there exists a strictly positive integer p such that

fXt|Xt−p,...(1)... ,Xt−1
( · | · ) = fXs|Xs−p,...(1)... ,Xs−1

( · | · )

for all s ∈ T and t ∈ T such that s− p ∈ T and t− p ∈ T.

Corollary 3.5 TRUNCATION PROPERTY FOR CSS MARKOV PROCESSES. Let {Xt : t ∈ T} be a
CSS(p) process satisfying condition M(p) with T ⊇ N. Then

fXt(p+1)|B(t+1)(p+1),p,Bt(p+1),p
( · | · ) = fXs(p+1)|B(s+1)(p+1),p,Bs(p+1),p

( · | · ) , ∀t ≥ 1, ∀s ≥ 1 .

To see the latter property, we note that Bτ ,p = Xτ−p, . . .(1) . . . ,Xτ−1. Then writing the condi-
tional density as

fXt(p+1)|B(t+1)(p+1),p,Bt(p+1),p
=

∏t(p+1)+p
τ=t(p+1) fXτ |Bτ,p∫ ∏t(p+1)+p

τ=t(p+1) fXτ |Bτ,p
dxt(p+1)

[see the proof of Theorem 3.2, equation (A.4) in the Appendix], the CSS(p) property of {Xt : t ∈
T} yields the result. The CSS(p) condition is entailed by strict stationarity. Furthermore, any
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random process that admits an AR(p) representation with i.i.d. errors is Markovian of order p and
CSS(p). This will be important for our purpose, since (3.4) can be rewritten as

Xt(p+1) = g(Zt(p+1), B(t+1)(p+1),p, Bt(p+1),p) + ηt(p+1) , t = 1, 2, . . . , n, (3.5)

where g no longer depends on t, which makes statistical inference much easier. Furthermore, for g
affine, (3.5) is the classical linear regression model.

We now give two other propositions that will be especially useful when the process {Xt : t ∈
T} has an AR representation.

Theorem 3.6 TRUNCATION PROPERTY FOR AR PROCESSES. Let {Xt : t ∈ T} be a Markov pro-
cess of order p on T ⊇ N. Then for any integer q ≥ p, we have fXt|Bt+1+q,q,Bt,q

= fXt|Bt+1+p,p,Bt,p
,

∀t ≥ q + 1.

Corollary 3.7 PROJECTION TRUNCATION FOR AR PROCESSES. Let {Xt : t ∈ T} be a Markov
process of order p on T, whose elements have finite second moments. Then, for any q such that
q ≥ p, we have EL(Xt|Bt+1+q,q, Bt,q) = EL(Xt|Bt+1+p,p, Bt,p).

In the context of random processes which satisfy only second order properties analogous to
those of Markov processes, results similar to intercalary independence and truncation hold. These
are given in Theorems 3.8 and 3.9.

Theorem 3.8 INTERCALARY ORTHOGONALITY. Let {Xt : t ∈ T} be a random process with
finite second moments such that

Xt⊥(X1, . . .(1) . . . ,Xt−p−1)|Bt,p .

Then

Xt(p+1)⊥Xs(p+1)|A1,p , ∀t ≥ 1 , ∀s ≥ 1 , t �= s .

Theorem 3.9 INTERCALARY ORTHOGONAL TRUNCATION. Let {Xt : t ∈ N} be a random
process with finite second moments such that

Xt⊥(X1, . . .(1) . . . ,Xt−p−1)|Bt,p .

Then for all t ≥ 1, we have

Xt(p+1)⊥Bs(p+1),p|
[
B(t+1)(p+1),p , Bt(p+1),p

]
, ∀t ≥ 1 , ∀s ≥ 1 , s �= t and s �= t+ 1 .

In the next section, we apply the above results to derive exact inference procedures for the
parameters of the original model (3.4). We start with AR(1) processes. We then consider a Markov
process of order 1 admitting a more general dynamic representation, which includes the classical
linear regression model with AR(1) errors as a special case. In a subsequent section, we shall derive
an exact inference procedure in the context of Markov processes of order p.
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4. Exact inference for AR(1) models

In the previous section, we showed how to use Theorems 3.1 and 3.2 to derive a time invariant
transformed model (3.5) from the initial model (3.2). If we wish to make inference on the parameters
of (3.2) via those of (3.5), we must establish in a more explicit way the relationship between the two
models. We can transform (3.2) into (3.5) by using two sorts of projections. Let {Yt : t ∈ T} be a
Markov process of order p on T ≡ {1, 2, ..., n(p+ 1)+ p}. The first kind of projection is suggested
by the results of Section 3. It is the projection of Yt(p+1) on the space generated by the functions
of the variables in Bt(p+1),p and B(t+1)(p+1),p (or the conditioning of Yt(p+1) upon Bt(p+1),p and
B(t+1)(p+1),p). Unless normality is assumed, this projection is likely to be nonlinear and difficult to
establish. Moreover, if {Yt : t ∈ T} is not CSS(p), we have no guarantee that this projection will
be identical for all t.

The second type of projection is the affine regression of Yt(p+1) on Bt(p+1),p and B(t+1)(p+1),p.
The resulting model is linear by construction and the relation between the initial and transformed
parameters is likely be simple enough for inference. A sufficient condition (although not necessary,
as we will see in the case of AR(1) processes) for this relation to be time invariant is weak station-
arity of the process {Yt : t ∈ T}. However, our objective is to make exact inference and we will
need to specify the probability distribution of {Yt : t ∈ T}. We will then assume that {Yt : t ∈ T}
is a Gaussian process. In that case, the two projections coincide.

In this section, we show how the results of the previous section can be applied to obtain exact
tests and confidence regions on the parameters of an AR(1) model.

4.1. Model transformation

Suppose the scalar process {Yt : t ∈ T}, where T ≡ {1, 2, ... , T} and T = 2n+1 for some integer
n, admits the following representation:

Yt = φYt−1 + εt , εt
i.i.d.∼ N(0, σ2

ε) , t ∈ T , (4.1)

with Y0 given and φ ∈ R. If we assume the εt’s are normally distributed, then {Yt : t ∈ T} is a
CSS(1) Markov process of order 1 on T. We are now ready to apply the results of Section 3. The
conditional distribution of Y2t given (Y2t+1, Y2t−1) is normal, for all t = 1, 2, . . . , n. Its mean is
given by the affine regression of Y2t on (Y2t+1, Y2t−1) and takes the form

EL(Y2t|Y2t+1, Y2t−1) = a+ β1Y2t+1 + β2Y2t−1 , t = 1, 2, . . . , n .

The following theorem shows that if |φ| < 1, then β1 = β2 ≡ β.

Theorem 4.1 REGRESSION SYMMETRY FOR WEAKLY STATIONARY PROCESSES. Let {Xt : t
∈ T} be a weakly stationary univariate stochastic process. For all strictly positive integers p,
the coefficients of Xt+k and Xt−k in the affine regression of Xt on (Bt+p+1,p, Bt,p) are equal,
1 ≤ k ≤ p, for all t ≥ p+ 1.
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Expressions for β and a are derived in the Appendix where it is shown that β = φ/(1 + φ2)
and a = 0. The variance of the residuals from the regression is σ2ε/(1 + φ2). These expressions are
valid for any φ ∈ R. Starting from (4.1), the equivalent of the transformed model (3.5) is

Y2t = βY ∗
2t + η2t , t = 1, 2, . . . , n , η|(Y ∗

2t , t = 1, 2, . . . , n) ∼ N
[
0,

σ2
ε

1 + φ2 In

]
, (4.2)

where Y ∗
2t ≡ Y2t+1 + Y2t−1 , t = 1, 2, . . . , n, η = (η2, η4, . . . η2n)′ and In is the n × n identity

matrix. (4.2) is a Gaussian linear regression model from which we can easily estimate β and make
exact inference on it. In particular, using the usual critical region W (α) ≡ {|t(β0)| > t1−α/2(n −
1)}, with t(β0) ≡ (β̂ − β0)/V̂ (β̂)1/2 where β̂ and V (β̂) are the usual OLS estimators of β and
V̂ (β̂), we can test any hypothesis of the form H0 : β = β0 against H1 : β �= β0. This test has exact
level α.

4.2. Exact tests on φ

Since (1+φ2)β = φ, the relation between the “initial” parameter φ and the “transformed” parameter
β is given by βφ2 − φ + β = 0. In order to make inference on φ using model (4.2), we need to
examine the roots of the polynomial q(x) = βx2 − x + β = 0. Since φ is assumed to lie in R,
we discard complex roots, obtained with |β| > 1/2. If we also exclude the trivial case β = 0
which yields φ = 0, the roots of q(x) are x1 =

(
1 + ∆1/2

q

)
/2β, x2 =

(
1 − ∆1/2

q

)
/2β, where

∆q = 1 − 4β2. Since x1x2 = 1, we have sign(x1) = sign(x2) and xi > 1 ⇐⇒ xj < 1, i, j =
1, 2, i �= j. Hence, with β �= 0 and |β| ≤ 1/2, two values of φ only are identified in (4.2). These
values are 1 and −1 which are respectively equivalent to β = 1/2 and β = −1/2. In other words,
given an a priori value for β, we can decide whether the process is integrated (|φ| = 1), but, if
not, we cannot distinguish a stationary process (|φ| < 1) from an explosive process (|φ| > 1).
However this identification problem can be avoided by excluding explosive processes. This should
not be a too restrictive practice if we admit that macroeconomic time series are usually integrated
or stationary. The case where β = 0 corresponds to a white noise process, i.e. φ = 0.

From the point of view of hypothesis testing, we have established the equivalence of each one
of the null hypotheses H01 : φ = 0, H02 : φ = 1, and H03 : φ = −1, with H∗

01 : β = 0, H∗
02 :

β = 1/2, and H∗
03 : β = −1/2, respectively. For these a priori values of φ, we have derived

an exact test procedure. For other values of φ, we can still consider the test of H∗
0 : β − β0 = 0

which corresponds to the test of H0 : φ ∈ {x0, x
−1
0 }, where x0 is the first root of q(x), evaluated at

β = β0.

4.3. Exact confidence sets for φ

It is easy to build an exact confidence interval at level 1−α for the parameter β in (4.2). Suppose the
random variables c1 and c2 satisfy c1 ≤ c2 with probability one and P ({c1 ≤ β} ∩ {β ≤ c2}) =
1−α. Since the events {c1φ2 − φ+ c1 ≤ 0} ∩ {c2φ2 − φ+ c2 ≥ 0} and {c1 ≤ β} ∩ {β ≤ c2} are
identical, the set {φ : c1φ2 − φ+ c1 ≤ 0 and c2φ

2 − φ+ c2 ≥ 0} is a confidence region for φ with
level 1− α. To characterize this region in the space of the parameter φ, we need to find the roots of
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Table 1: Confidence regions for the autocorrelation parameter of an AR(1) process

c1

c2 (−∞,−1/2) −1/2 (−1/2, 0) 0 (0, 1/2) 1/2 (1/2,∞)

(−∞,−1/2) ∅ {1} [z1,z2] (−∞,0] (−∞,z1]∪[z2,∞) R R

−1/2 {1} [z1,z2] (−∞,0] (−∞,z1]∪[z2,∞) R R(
(−∞,x1]∪[x2,∞)

) (
(−∞,x1]∪[x2,∞)

) (
(−∞,x1]∪[x2,∞)

)
(−∞,x1] (−∞,x1]

(−1/2,0) ∩ ∩ ∩ ∪ ∪
[z1,z2] (−∞,0]

(
(−∞,z1]∪[z2,∞)

)
[x2,∞) [x2,∞)

[0,∞)

0 {0} ∩ [0,∞) [0,∞)(
(−∞,z1]∪[z2,∞)

)
[x1,x2]

(0,1/2) ∩ [x1,x2] [x1,x2](
(−∞,z1]∪[z2,∞)

)
1/2 {−1} {−1}

(1/2,∞) ∅

Note 1 xi, i = 1, 2, are the roots of q1(x), and zi, i = 1, 2, the roots of q2(x).
Note 2 Empty cells come from the inequality c1 ≤ c2.

the polynomials qi(x) = cix2 − x+ ci , i = 1, 2, when c1 and c2 are treated as constants. We can
then distinguish the following cases.

1. If |c1| < 1/2, the polynomial q1(x) has two distinct real roots denoted x1 and x2, and we
can assume that x1 < x2. If −1/2 < c1 < 0, then q1(x) ≤ 0 if and only if x ∈ (−∞, x1] ∪
[x2,∞). If 0 < c1 < 1/2, q1(x) ≤ 0 if and only if x ∈ [x1, x2]. If c1 = 0, q1(x) ≤ 0 if and
only if x ∈ [0,∞).

2. If |c1| = 1/2, q1(x) has only one root. In this case, when c1 = 1/2, q1(x) ≤ 0 if and only if
x = 1, and when c1 = −1/2, q1(x) ≤ 0 if and only if x = −1.

3. If |c1| > 1/2, q1(x) always takes the same sign on R. If c1 < −1/2, q1(x) ≤ 0 for all x ∈ R;
if c1 > 1/2, no real value of x satisfies q1(x) ≤ 0.

Similarly, we determine the regions of R on which q2(x) ≥ 0. The different possibilities are sum-
marized in Table 1.

5. Extension of the AR(1) model

In this section, we extend the procedures described in the previous section by considering more
general processes. Let {Yt : t ∈ T}, where T ≡ {1, 2, . . . , T = n(p + 1) + p}, be a random
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process with the following representation:

Λ(B)Yt = mt + εt , εt
ind∼ (0, σ2

ε) , t = 1, 2, . . . , T ,

Λ(B) ≡ 1 −∑p
i=1 λiB

i , with Y0, Y−1, . . . , Y−p+1 fixed,
(5.1)

where B is the backward shift operator, mt is an exogenous component, ε = (ε1, ε2, . . . , εT )′, and

εt
ind∼ (0, σ2

ε) , t = 1, 2, . . . , T , means the εt’s are independent with common mean 0 and variance
σ2

ε . Taking expectations on both sides, we obtain Λ(B)Mt = mt , where Mt ≡ E(Yt). Define the
process {Xt ≡ Yt −Mt : t ∈ T}. Clearly, {Xt : t ∈ T} satisfies

Λ(B)Xt = εt , εt
ind∼ (0, σ2

ε) , t = 1, 2, . . . , T , (5.2)

i.e. {Xt : t ∈ T} is a zero mean process which admits an AR(p) representation, where the dis-
turbances εt , t ∈ T , are independent with common mean zero and variance σ2ε. Consider now the
case where p = 1.We have

Yt = mt + λYt−1 + εt , εt
ind∼ (0, σ2

ε) , t = 1, 2, . . . , T .

This representation includes as particular cases a wide range of models frequently used in econo-
metrics. In particular: (1) if mt = 0, ∀t ∈ T , and λ = 1, we have the random walk model; (2) if
mt = b0, ∀t ∈ T , and λ = 1,we have a random walk with drift; (3) ifmt = b(t) ≡∑r

i=1 bit
i, ∀t ∈

T , the process contains a deterministic polynomial trend. In what follows, we assume mt has the
formmt =

∑K
k=0 bkZk,t, where Z0, Z1, . . . , ZK are exogenous variables.

Since {Xt : t ∈ T} has an AR(1) representation, application of the procedure described in
Section 4 is straightforward. The projection is EL[X2t|(X2t+1,X2t−1)] = β(X2t+1 +X2t−1) with
β = λ/

(
1 + λ2

)
and we consider the following transformed model:

X2t = βX∗
2t + η2t , t = 1, 2, . . . , n , η ∼ (0, σ2

ηIn) (5.3)

where X∗
2t ≡ X2t+1 +X2t−1, σ

2
η ≡ σ2

ε/
(
1 + λ2

)
and η = (η2, η4, . . . , η2n)′. (5.3) can be written

Y2t =M2t − β(M2t+1 +M2t−1) + βY ∗
2t + η2t

with Y ∗
2t = Y2t+1 + Y2t−1. Now, withmt =Mt − λMt−1 and β = λ/

(
1 + λ2

)
, (5.3) becomes

Y2t = β1m2t + β2m2t+1 + βY ∗
2t + η2t , t = 1, 2, . . . , n ,

in which β1 ≡ 1/
(
1 + λ2

)
, β2 ≡ −β. Finally, since mt =

∑K
k=0 bkZk,t, the transformed model is

Y2t = βY ∗
2t +

K∑
k=0

θ1kZk,2t +
K∑

k=0

θ2kZk,2t+1 + η2t (5.4)
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where θ1k ≡ bk/
(
1+λ2

)
and θ2k ≡ −λbk/

(
1 +λ2

)
. Using the matrix notation, (5.4) is equivalent

to

νt = Z∗′
t δ + η∗t , t = 1, 2, . . . , n , (5.5)

with νt ≡ Y2t , Z∗
t ≡ (Z2t, Z2t+1, Y

∗
2t)

′, δ ≡ (θ′
1, θ

′
2, β)′, θi ≡ (θi,0, θi,1, . . . , θi,K)′, i =

1, 2. If we assume that η is normally distributed, we can perform exact tests on λ and/or bk, k =
0, 1, . . . ,K. This is done in the next section.

5.1. Exact confidence sets and tests on bk

As we showed, the parameters of (5.5) must satisfy θ2k = −bkβ, k = 0, 1, . . . ,K. The hypothesis
bk = b̄0 is therefore equivalent to θ2k + b̄0β = 0 which can be tested in (5.5) by a standard
F procedure. Furthermore it is well known that the set of all values b̄0 such that the hypothesis
H0 : θ2k + b̄0β = 0 is not rejected at level α forms a confidence region for bk at level 1 − α.
Using the same relation between the transformed parameters θ2k and β and the initial parameters
bk, k = 0, 1, . . . ,K, any linear hypothesis of the formRb−r = 0, whereR is a known q×(K+1)
matrix with rank q, r is a known q × 1 vector and b = (b0, b1, . . . , bK)′, can be tested at level α.
To see how to exploit the relation between the two sets of parameters, note that

Rb− r = 0 ⇐⇒ Rθ2 + rβ = 0 ⇐⇒ R∗δ = 0

where R∗ ≡ (0, R, r) so that a test of Rb − r = 0 is equivalent to a test of R∗δ = 0. Again, this
is a hypothesis on the parameters of (5.5) which can be tested with the usual F procedure.

5.2. Exact tests on λ

The components of δ in (5.5) must satisfy θ2k = −θ1kλ, k = 0, 1, . . . ,K and β = λ/
(
1 + λ2

)
.

From these relations, we see that a test of λ = λ0 is equivalent to a test of the joint hypothesis:
θ2k + λ0θ1k = 0, k = 0, 1, . . . ,K, and β = λ0/(1 + λ0

2). Using matrix notation we can easily
write this set of restrictions as a linear hypothesis on the parameters of (5.5), i.e.,R̃δ = r0 with

R̃ ≡
(
λ0IK+1 IK+1 0

0′ 0′ 1

)
, r0 ≡

(
0

λ0/(1 + λ0
2)

)
.

Unlike for the pure AR(1) process of Section 4, we are now able to obtain a test for any a priori
value λ0 of the autocorrelation parameter λ.

5.3. Exact confidence sets for λ

In Section 4.3 we showed how to build an exact confidence region for λ at level 1 − α. This
confidence region, denoted CK+1(y, α), satisfies P

[{y : CK+1(y, α1) � λ}] = 1 − α1 or
P
[
AK+1(α1)

]
= 1 − α1, where AK+1(α1) ≡ {y : CK+1(y, α1) � λ}, ∀α1 ∈ (0, 1).

Similarly, we can also use the relation θ2k + λθ1k = 0, k = 0, 1, . . . ,K, to derive an exact
test of H0 : λ = λ0. This hypothesis is equivalent to H0,k(λ0) : ak(λ0)′δ = 0, where ak(x) ≡
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(
xι′k+1, ι′k+1, 0

)
, ιl being the l-th vector of the canonical basis of R

K+1, x ∈ R. The set

Ck(y, α1) of all values λ0 of λ such that H0,k(λ0) is not rejected at level α1 is a 1 − α1 confidence
region for λ. Therefore P

[
Ak(α1)

]
= 1 − α1, where Ak(α1) ≡ {y : Ck(y, α1) � λ}. Since this

condition holds for any k = 0, 1, . . . K, we can combine these regions to form a single confidence
region for λ which has level 1 − α. Clearly, we have

P

[
K+1⋂
k=0

Ak(α1)

]
= 1 − P

[
K+1⋃
k=0

Ak(α1)

]

where Ak(α1) denotes the set of all y which are not in Ak(α1), and

P

[
K+1⋃
k=0

Ak(α1)

]
≤

K+1∑
k=0

P
[
Ak(α1)

]
= (K + 2)α1 ,

hence

P

[
K+1⋂
k=0

Ak(α1)

]
≥ 1 − (K + 2)α1

and choosing α1 such that α1 = α/(K + 2), we get

P

[
K+1⋂
k=0

Ak(α1)

]
≥ 1 − α .

But
⋂K+1

k=0 Ak(α1) =
{
y :
⋂K+1

k=0 Ck(y, α1) � λ
}
. This shows that C(y, α) ≡ ⋂K+1

k=0 Ck

(
α

K+2

)
is a 1 − α confidence region for λ.

5.4. Exact tests of joint hypotheses

It is also possible to use (5.5) to derive an exact test of a linear hypothesis on the vector
(
λ,b(m)′)′ ,

where b(m) is an m× 1 subvector of b. Consider the null hypothesis

H0 : λ = λ0 and Rb(m) − r = 0

where R is a known q × m matrix with rank q, r is a known q × 1 vector and b(m) =
(bk1 , bk2 , . . . bkm)′. The following equivalences hold

λ = λ0

Rb(m) − r = 0

}
⇔
{
θ2k + λ0θ1k = 0 , k ∈ Km

Rb(m)β − rβ = 0

}
⇔
{
Imθ

(m)
2 + λ0Imθ

(m)
1 = 0

Rθ
(m)
2 + rβ = 0
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where Km ≡ {k1, k2, . . . km}, θ(m)
i ≡ (θik1, θik2, . . . θikm)′ , i = 1, 2. Defining

Q ≡
(
Im λ0Im 0
0 R r

)
, δ(m) ≡

 θ
(m)
1

θ
(m)
2

β

 ,
we see that H0 is equivalent to Qδ(m) = 0. Finally H0 appears as a linear hypothesis on the

parameters of (5.5): H0 : R̂δ∗ = 0 with R̂ ≡ (Q 0) , δ∗ ≡
(
δ(m)′, δ)m(′

)′
, δ)m( ≡

(θ1,k θ2k , k �∈ Km)′ . Once again, the standard Fisher procedure solves the problem.

5.5. Linear regression models with AR(1) errors

We now show that model (5.1) with p = 1 includes as an important special case the linear regression
model with AR(1) errors. This model is given by

Yt = mt + ut , ut = φut−1 + εt , t = 1, 2, . . . , T,

with εt
i.i.d.∼ N(0, σ2

ε) and u0 given. An alternative form of this model is

Yt = mt + φut−1 + εt , t = 1, 2, . . . , T.

Since ut = Yt −mt , t = 1, 2, . . . , T, we have

Yt = m∗
t + φYt−1 + εt , t = 2, 3, . . . , T, (5.6)

where m∗
t ≡ mt − φmt−1. It is now clear that this model is a special case of (5.1). The proce-

dures developed in the previous sections therefore apply to (5.6). In particular, exact inference in
integrated AR(1) models is available.

5.6. A test on the order of an autoregression

We now turn to another kind of inference problem. We are no longer interested in inference on the
components of the mean vector or autocovariance matrix, but rather on the order of the autoregres-
sion in AR(p) models. There is a situation in which Theorem 3.6 and its corollary are of special
interest. Consider {Xt : t ∈ T} , a stochastic process for which we know that one of the following
representations is true:

Φ(B)Xt = εt , where Φ(z) = 1 − φ1z − φ2z
2 − · · · − φp1

zp1 ,

Ψ(B)Xt = νt , where Ψ(z) = 1 − ψ1z − ψ2z
2 − · · · − ψp2

zp2 ,

where εt and νt are both Gaussian white noises and p1 �= p2 (we set p1 < p2). Suppose we
wish to test H0 : {Xt : t ∈ T} ∼ AR(p1) against H1 : {Xt : t ∈ T} ∼ AR(p2). If H0 is
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true, then {Xt : t ∈ T} is Markovian of order p1, and we know from Corollary 3.7 that the
coefficient of Xτ in the affine regression of Xt on p2 leads and p2 lags will be zero for any τ such
that |τ − t| = p1 + 1, . . . , p2. Since the affine regression is a classical linear regression model,
standard inference procedures apply. From the exposition of the procedures, it is clear that splitting
the sample entails an information loss. We may then suspect the tests to lack power. We investigate
this issue in the next section.

6. Combination of tests

One of the purposes of this paper is to improve the Ogawara-Hannan testing procedure. In the
previous sections, we showed that Ogawara’s results can be extended to a much wider class of
processes than those considered in Ogawara (1951) and Hannan (1955a, 1955b, 1956). We also
showed one can use these results to obtain finite sample inference procedures for a wide variety of
econometric models. However, when we apply those, we are led to leave one half of the sample
apart, at least. In this section, we discuss methods that allow one to make use of the full sample. We
also present simulation results which show our method performs better than that of Ogawara and
Hannan.

6.1. Theoretical results

Consider a statistical model characterized by a family of probability laws, parameterized by θ :
P = {Pθ, θ ∈ Θ}. Suppose we wish to test H0 : P ∈ P0 against H1 : P ∈ P \ P0. If the model
is identified, which will be assumed, this amounts to test H0 : θ ∈ Θ0 against H1 : θ ∈ Θ1,
where θ ∈ Θ0 ⇐⇒ Pθ ∈ P0. Assume we have m statistics Ti, i ∈ J ≡ {1, 2, . . . ,m}, that
can be used for testing H0. Further assume that under H0, Pθ [{y : Ti(y) > t}] is known, for all
t ∈ R, i ∈ J. The relation between these statistics is typically unknown or difficult to establish.
We wish to combine the information provided by each of those m statistics on the true probability
distribution of the model.

A natural way of doing this is to proceed as follows. Using the m statistics Ti, we build m
critical regions Wi(αi) ≡ T−1

i

(
(ti(αi),∞)

)
, where the ti(αi)’s are chosen so that Pθ [Wi(αi)] =

αi. We reject H0 with a test based an the i-th statistic if y is in Wi(αi), or equivalently if the
observed value ti of Ti is in (ti(αi),∞) . Consider the decision rule which consists in rejecting H0

when it has been rejected by at least one of the tests based on a Ti statistic. The rejection region
corresponding to this decision rule is

⋃
i∈J Wi(αi). This test is called an induced test of H0 [see

Savin (1984)]. Its size is impossible or difficult to determine since the distribution of the vector
(T1, T2, . . . , Tm)′ is generally unknown or intractable. It is however possible to choose the αi’s so
that the induced test has level α.We have

Pθ

[ ⋃
i∈J

Wi(αi)
]
≤
∑
i∈J

Pθ [Wi(αi)] ≤
∑
i∈J

αi

and so we only need to choose the αi’s so that they sum to α. To our knowledge, there is no criterion
for choosing the αi’s in a way that could be optimal in some sense. Without such a rule, we will set
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αi = α0 = α/m for all i ∈ J.
It is difficult to compare the power of an α level test based on a single statistic Ti with that of a

α level induced test. The latter uses the information provided by the whole sample, but is obtained
by combining m tests of level α/m only, whereas the former has level α > α/m, but only exploits
a subsample. In other words, with respect to power, what can be gained from the larger sample size
on which is based the induced test could be lost because the levels of the individual tests combined
are lower (e.g., α/m instead of α). We now present simulations that reveal the power increase
associated with combining tests.

6.2. Power simulations for AR(1) processes

Let {Yt : t ∈ T}, where T = {1, 2, . . . , T}, a random process admitting an AR(1) representation

Yt = λYt−1 + εt , εt
i.i.d.∼ N(0, IT ) , t ∈ T , (6.1)

with Y0 given. For the sake of simplicity, we assume that T is even with T = 2n. Since {Yt :
t ∈ T} is a Markov process of order 1, the results of Section 2 apply and we know that: (1)
Y2t , t = 1, 2, . . . , n − 1, are mutually independent, conditionally to (Y1, Y3, . . . , Y2n−1); (2)
Y2t+1 , t = 1, 2, . . . , n − 1, are mutually independent, conditionally to (Y2, Y4, . . . , Y2n). If we
define two subsets of T, J1 = {2, 4, . . . , 2n − 2} and J2 = {3, 5, . . . , 2n − 1}, we obtain two
transformed models of type (4.2):

Yt =
λ

1 + λ2 (Yt+1 + Yt−1) + ηit , t ∈ Ji, , ηi ∼ N(0, σ2
ηIni) (6.2)

where ηi ≡ (ηit, t ∈ Ji)′, i = 1, 2, and n1 = n − 1, n2 = n. In each of these two models it
is possible to test H0 : λ = λ0 at level α/2, as shown in Section 4. We combine these two tests
according to the procedure described in 6.1.

In our simulations, we proceed as follows. We consider λ0 = 0, 0.5, 1 and T = 100. For
a set V (λ0) of S values of λ in a neighborhood of λ0, we simulate a sample of size T from the
AR(1) process (6.1). Then we form the two subsamples (yt : t ∈ Ji), i = 1, 2, from which we
test H0(β0) : β = β0 in the transformed model (6.2), with β0 = λ0/

(
1 + λ2

0

)
. For purposes of

comparison, these tests are performed at levels 5% and 2.5%. The two 2.5% level tests are combined
to give a 5% level induced test. These computations are repeated 1000 times, for each value of λ
in V (λ0). The number of rejections of H0(β0) gives an estimation of the performance of the test.
Results are shown in Figures 1 to 6 where the solid line (—) represents the 5% induced test and the
dashed lines (−−) and (− · −) represent the 5% subsample-based tests.

Figures 1 to 3 display the estimated power function for λ = 0, 0.5, 1 respectively, whereas
the last three (Figures 4 to 6) show the differences of rejection frequencies for λ = 0, 0.5, 1
respectively. More precisely these differences are computed as: Number of rejections of H0(β0)
with the induced test − Number of rejections of H0 with the test based on subsample (yt : t ∈ Ji), :
i = 1, 2.

Apart from the case where λ0 = 0, the combination method leads to a power increase, relative
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Figure 1. Rejection frequencies of H0 : λ = 0
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Figure 2. Rejection frequencies of H0 : λ = 0.5
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Figure 3. Rejection frequencies of H0 : λ = 1
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Figure 4. Differences of rejection frequencies for H0 : λ = 0

22



0 0.5 1 1.5 2 2.5
-2

0

2

4

6

8

10

12

14

16

18

lambda

dr
f (

%
)

Figure 5. Differences of rejection frequencies for H0 : λ = 0.5
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to a 5% level test based on a subsample. When λ0 = 0, the power loss from combining is about
8% at most, which appears small. For λ0 �= 0, it is important to note that the values λ and λ−1

yield the same value of β in (6.2). For example λ = 0.5 and λ = 2.0 both yield β = 0.4. In other
words, unless we impose restrictions such as |λ| ≤ 1 or |λ| ≥ 1, the value of β does not completely
identify λ. This explains the presence of the mirror peak at λ = 2 [Figure 2].

7. Conclusion

In this paper we proposed a method allowing one to make finite-sample inference on the parameters
of autoregressive models. This was made possible by special properties of Markov processes. The
conditions under which such results hold are very mild since their demonstrations only require the
existence of density functions. In particular, they are general enough to be applied to multivariate
and possibly non stationary and/or non-Gaussian processes. However, with the addition of condi-
tional stationarity and normality assumptions, we were able to use these properties to derive exact
tests and confidence regions on the parameters of AR(1) models. In order to apply our procedure, it
is necessary to split the sample as two subsets of observations. Our simulations in the case of a pure
AR(1) model showed that a combination of separate inference results based on these subsamples
generally leads to an improvement in the performance of the procedure.

Our method displays several attractive features. First, since it is exact, it controls the probability
of making a type I error. Second, it is readily applicable to a wide range of econometric specifica-
tions of AR(1) models. In particular, it can be used to deal with random walk models, models with
a deterministic mean expressed as a linear combination of exogenous variables, including polyno-
mial deterministic trends, etc. Third, the critical regions are built from standard distributions which,
unlike most asymptotic procedures, do not change with the sample size and/or model specification.
Finally, Monte Carlo experiments show that it has good power properties. For those reasons, we
think that our procedure should be considered as a good alternative to asymptotic inference methods.

In Section 6, we argued that simulations of power functions were necessary because we could
not say a priori whether the combination method yields more power. Indeed, on the one side we
make use of the whole sample when combining, but on the other side we must lower the bound on
the probability of making a type I error (the level) in each of the tests we combine. The former
should increase the performance of the procedure whereas the latter should decrease it. The method
is easily transposable to higher order autoregressive models and it appears quite plausible the same
effect will take place in more general processes. It would certainly be of interest to study this issue
further.

Of course, the finite-sample validity of the t and F -type tests described in sections 4 and 5
remain limited to models with Gaussian errors. As usual, these procedures will however be asymp-
totically valid under weaker distributional assumptions. Further, it is of interest to remember that
the general theorems on Markovian processes given in Section 3 hold without parametric distri-
butional assumptions. In particular the conditional independence and truncation properties do not
at all require the Gaussian distributional assumption, hence opening the way to distribution-free-
procedures. Similarly the test combination technique described in Section 6, which is based on the
Boole-Bonferroni inequality, is by no way restricted to parametric models. For example, the lat-
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ter might be applied to combine distribution-free tests or bootstrap tests [see Nankervis and Savin
(1996)] which accommodate more easily non-Gaussian distributions. Such extensions go however
beyond the scope of the present paper.
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A. Appendix: Proofs

A.1 Proof of Theorem 3.1 We must show that

fX(p+1) ,...(p+1)... ,Xn(p+1)|A1,p
=

n∏
t=1

fXt(p+1)|A1,p
.

The following equality is always true

fX(p+1) ,...(p+1)... ,Xn(p+1)|A1,p
= fX(p+1)|A1,p

n∏
t=2

fXt(p+1)|A1,p,X(p+1),...(p+1)... ,X(t−1)(p+1)
. (A.1)

Consider the t-th term of the product in (A.1) for t ≥ 2 :

fXt(p+1)|A1,p,X(p+1),...(p+1)... ,X(t−1)(p+1)
= fXt(p+1)|X1,...(1)... ,Xt(p+1)−1,At+1,p

=
fXt(p+1),At+1,p|X1,...(1)... ,Xt(p+1)−1

fAt+1,p|X1,...(1)... ,Xt(p+1)−1

. (A.2)

The numerator in (A.2) can be written

fXt(p+1),At+1,p|X1,...(1)... ,Xt(p+1)−1
=

∫
· · ·
∫
fXt(p+1),...(1)... ,Xn(p+1)+p|X1,...(1)... ,Xt(p+1)−1

d(x(t+1)(p+1), . . .(p+1) . . . , xn(p+1))

=
∫

· · ·
∫ n(p+1)+p∏

s=t(p+1)

fXs|X1,...(1)... ,Xs−1
d(x(t+1)(p+1), . . .(p+1) . . . , xn(p+1))

=
∫

· · ·
∫ n(p+1)+p∏

s=t(p+1)

fXs|Xs−p,...(1)... ,Xs−1
d(x(t+1)(p+1), . . .(p+1) . . . , xn(p+1))

where the last identity follows from the Markovian property M(p). Set

g1(at+1,p, xt(p+1)) ≡ fXt(p+1),At+1,p|X1,...(1)... ,Xt(p+1)−1
(at+1,p, xt(p+1)) .

Similarly, we can write the denominator of (A.2) as

fAt+1,p|X1,...(1)... ,Xt(p+1)−1
=
∫

· · ·
∫ n(p+1)+p∏

s=t(p+1)

fXs|Xs−p,...(1)... ,Xs−1
d(xt(p+1), . . .(p+1) . . . , xn(p+1))
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and we denote g2(at+1,p) ≡ fAt+1,p|X1,...(1)... ,Xt(p+1)−1
(at+1,p). Clearly, neither g1(at+1,p, xt(p+1))

nor g2(at+1,p) depends on (X(p+1), . . .(p+1) . . . , X(t−1)(p+1)). Therefore these variables do not
enter the ratio (A.2) and we may write the t-th term of the product (A.1) for t ≥ 2 as

fXt(p+1)|A1,p,X(p+1),...(p+1)... ,X(t−1)(p+1)
= fXt(p+1)|A1,p

.

Since this is true for any t = 1, 2, . . . , n, we can factor the conditional density as

fX(p+1) ...(p+1)... ,Xn(p+1)|A1,p
=

n∏
t=1

fXt(p+1)|A1,p

which yields the result to be proved. Q.E.D.

A.2 Proof of Theorem 3.2 From Theorem 3.1, Xp+1,X2(p+1), . . . ,Xn(p+1) are mutually in-
dependent conditionally on A1,p, hence

fXt(p+1)|A1,p
= fXt(p+1)|X1,...(1)... ,Xt(p+1)−1,Xt(p+1)+1,...(1)... ,X(n+1)(p+1)

=
fXt(p+1),...(1)... ,X(n+1)(p+1)|X1,...(1)... ,Xt(p+1)−1

fXt(p+1)+1,...(1)... ,X(n+1)(p+1)|X1,...(1)... ,Xt(p+1)−1

=
fXt(p+1),...(1)... ,X(n+1)(p+1)|X1,...(1)... ,Xt(p+1)−1∫

fXt(p+1),...(1)... ,X(n+1)(p+1)|X1,...(1)... ,Xt(p+1)−1
dxt(p+1)

=

∏(n+1)(p+1)
s=t(p+1) fXs|X1,...(1)... ,Xs−1∫ ∏(n+1)(p+1)

s=t(p+1) fXs|X1,...(1)... ,Xs−1
dxt(p+1)

=

∏(n+1)(p+1)
s=t(p+1) fXs|Xs−p,...(1)... ,Xs−1∫ ∏(n+1)(p+1)

s=t(p+1) fXs|Xs−p,...(1)... ,Xs−1
dxt(p+1)

(A.3)

where the last equality is derived using the Markovian property M(p). The product of conditional

densities in the numerator of (A.3) can be splitted as
∏(n+1)(p+1)

s=t(p+1)
fXs|Bs,p

= G1 ×G2, where

G1 ≡
(t+1)(p+1)−1∏

s=t(p+1)

fXs|Xs−p,...(1)... ,Xs−1
, G2 ≡

(n+1)(p+1)∏
s=(t+1)(p+1)

fXs|Xs−p,...(1)... ,Xs−1
.

Clearly, G2 does not depend on Xt(p+1). Therefore, the ratio (A.3) simplifies as

fXt(p+1)|A1,p
=

G1∫
G1dxt(p+1)

. (A.4)

Now, due to the Markovian property M(p), any of the conditional densities in the product G1 can
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be written as fXs|Xs−p,...(1)... ,Xs−1
= fXs|Xt(p+1)−p,...(1)... ,Xs−1

, s = t(p+1), t(p+1)+1, . . . , (t+
1)(p + 1). Therefore it is easy to see that

G1 =
(t+1)(p+1)−1∏

s=t(p+1)

fXs|Xt(p+1)−p,...(1)... ,Xs−1

= fXt(p+1),...(1)... ,X(t+1)(p+1)−1|Xt(p+1)−p,...(1)... ,Xt(p+1)−1
.

Hence ∫
G1dxt(p+1) = fXt(p+1)+1,...(1)... ,X(t+1)(p+1)−1|Xt(p+1)−p,...(1)... ,Xt(p+1)−1

and

fXt(p+1)|A1,p
=

G1∫
G1dxt(p+1)

= fXt(p+1)|Xt(p+1)−p,...(1)... ,Xt(p+1)−1,Xt(p+1)+1,...(1)... ,X(t+1)(p+1)−1
.

Since Xt(p+1)+1 = X(t+1)(p+1)−p, we can use the notation of Section 3.1 to write fXt(p+1)|A1,p
=

fXt(p+1)|Bt(p+1),p,B(t+1)(p+1)
which is the desired result. Q.E.D.

A.3 Proof of Theorem 3.6 We need to show that fXt|Bt,q,Bt+q+1,q
does not depend onXt−τ and

Xt+τ , for τ = p+ 1, p+ 2, . . . , q.We have:

fXt|Bt+q+1,q,Bt,q
=
fXt,Bt+q+1,q|Bt,q

fBt+q+1,q|Bt,q

=
fXt,Bt+q+1,q|Bt,q∫
fXt,Bt+q+1,q|Bt,q

dxt
.

Now, using the fact that {Xt : t ∈ T} is Markovian of order p, the numerator of this last term can
be written fXt,Bt+q+1,q|Bt,q

= fXt ,...(1)... , Xt+q|Bt,q
=
∏t+q

s=t fXs|Bs,p
so that

fXt|Bt+q+1,q,Bt,q
=

∏t+q
s=t fXs|Bs,p∫ ∏t+q

s=t fXs|Bs,p
dxt

=

∏t+q
s=t fXs|Bs,p(∏t+q

s=t+p+1 fXs|Bs,p

)( ∫ ∏t+p
τ=t fXτ |Bτ,p

dxt

)
=

∏t+p
s=t fXs|Bs,p∫ ∏t+p

s=t fXs|Bs,p
dxt

.

It is easy to see that the variables Xs with t+ q ≥ s ≥ t+ p+ 1 and t− p− 1 ≥ s ≥ t− q do not
appear in the latter expression. Q.E.D.

A.4 Proof of Theorem 3.8 Let {Yt : t ∈ T} be a Gaussian process having the same first and
second order moments as {Xt : t ∈ T} . Then {Yt : t ∈ T} must also satisfy the condition in the
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theorem

Yt⊥(Y1, . . .(1) . . . , Yt−p−1)|Yt−p, . . .(1) . . . , Yt−1 , ∀t ≥ p+ 1 ,

which is equivalent to the Markovian condition fYt|Y1,...(1)... ,Yt−1
= fYt|Yt−p,...(1)... ,Yt−1

, ∀t ≥ p+1,
since {Yt : t ∈ T} is Gaussian. From Theorem 3.1, Yp+1, . . .(p+1) . . . , Yn(p+1) are mutually
independent, conditional on AY

1,p, where AY
1,p is defined like A1,p in Section 3.1 withX replaced by

Y. Using the normality of {Yt : t ∈ T} , this is equivalent to

Yt(p+1)⊥Ys(p+1)|AY
1,p , ∀t, s such that 1 ≤ t, s ≤ n, t �= s .

This is a condition on the first and second order moments of {Yt : t ∈ T} , which must also be
satisfied by the first and second order moments of {Xt : t ∈ T} . Hence, if A1,p denotes the set of
X variables as defined in Section 3.1,

Xt(p+1)⊥Xs(p+1)|A1,p , ∀t, s such that 1 ≤ t, s ≤ n, t �= s .

Q.E.D.

A.5 Proof of Theorem 3.9 Let {Yt : t ∈ T} be a Gaussian process having the same first and
second order moments as {Xt : t ∈ T}. From the proof of Theorem 3.8, we know that {Yt : t ∈ T}
must also satisfy

fYt|Y1,...(1)... ,Yt−1
= fYt|Yt−p,,...(1)... ,Yt−1

, ∀t ≥ p+ 1 .

Then, from Theorem 3.2, we have

fYt(p+1)|AY
1,p

= fYt(p+1)|BY
(t+1)(p+1),p

,BY
t(p+1),p

, ∀t such that 1 ≤ t ≤ n ,

where for any s, BY
s,p ≡ (Ys−p, . . .(1) . . . , Ys−1). Since {Yt : t ∈ T} is Gaussian, this condition is

equivalent to

Yt(p+1)⊥BY
s(p+1),p|

(
BY

(t+1)(p+1),p, B
Y
t(p+1),p

)
for all t ≥ 1 and s ≥ 1 such that s �= t and s �= t+ 1. Since this is condition on the first and second
order moments of {Yt : t ∈ T} , it must also be satisfied by those of {Xt : t ∈ T}. Q.E.D.

A.6 Proof of Theorem 4.1 EL

[
Xt|
(
Bt+p+1,p, Bt,p

)]
= EL

[
Xt|
(
Bt+p+1,p, B

∗
t,p

)]
is the affine

regression of Xt on
(
Bt+p+1,p, Bt,p

)
, where B∗

ν,p ≡ (Xν−p,Xν−p+1, . . . ,Xν−1). The matrix of
the coefficients of this regression is given by Ψ12Ψ−1

22 , where

Ψ12 ≡ cov
[
Xt,
(
Bt+p+1,p, B

∗
t,p

)]
, Ψ22 ≡ V

[(
Bt+p+1,p, B

∗
t,p

)]
.
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We partition these matrices in the following way:

Ψ12 ≡
(
C1 C2

)
, Ψ22 ≡

(
A11 A12

A21 A22

)

where

A11 ≡ V
(
Bt+p+1,p

)
, A22 ≡ V

(
B∗

t,p

)
, A′

21 = A12 ≡ cov
(
Bt+p+1,p, B

∗
t,p

)
,

C1 ≡ cov
(
Xt, Bt+p+1,p

)
, C2 ≡ cov

(
Xt, B

∗
t,p

)
.

Since {Xt : t ∈ T} is weakly stationary, C1 = C2 ≡ C and A11 = A22 ≡ A1.We next show that
A12 = A21, i.e., A12 is symmetric. The (i, j)-th element of this matrix is

cov(Xt+p+1−i,Xt−p+j−1) = γ|t+p+1−i−t+p−j+1| = γ|2(p+1)−(i+j)|

where γ|s−t| ≡ cov(Xs,Xt), and its (j, i)-th element is

cov(Xt+p+1−j ,Xt−p+i−1) = γ|t+p+1−j−t+p−i+1| = γ|2(p+1)−(j+i)| .

These two terms are identical and consequently A12 = A′
12 = A21 ≡ A2. The vector Π whose

components are the coefficients of Xt+k and Xt−k , 1 ≤ k ≤ p, in the affine regression of Xt on(
Bt+p+1,p, B

∗
t,p

)
is given by

Π =
(
C C

)( A1 A2

A2 A1

)−1

.

Define Π1 and Π2, the two (1 × p) subvectors of Π whose elements are the coefficients of the
variables in Bt+p+1,p and in B∗

t,p, respectively. Then

C = Π1A1 + Π2A2

C = Π1A2 + Π2A1

⇒

A1(Π1 − Π2) +A2(Π2 − Π1) = 0

A2(Π1 − Π2) +A1(Π2 − Π1) = 0

which is equivalent to

Ψ22

(
Π1 − Π2

Π2 − Π1

)
= 0 .

Assuming that the variance-covariance matrix Ψ22 is non singular, we must have Π1 = Π2. Q.E.D.
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B. Appendix: Coefficients of two-sided autoregressions for AR(1)
processes

The model is

Yt = φYt−1 + ut , t = 1, 2, . . . , n ,

u = (u1, ... , un)′ ∼ N(0, σ2
uIn) ,

with Y0 given. Rewriting Yt = φtY0 +
∑t−1

i=0 φ
iut−i and taking expectations, we get E(Yt) = φtY0.

The mean deviation process {Xt ≡ Yt − E(Yt) : t = 1, 2, . . . , n} satisfies the autoregression
Xt = φXt−1 + ut.

B.1. Computation of first order moments

Define Ψ12 ≡ cov
[
Y2t,

(
Y2t+1 , Y2t−1

)′]
and Ψ22 ≡ V

[
(Y2t+1 , Y2t−1)′

]
. From the definition of

{Xt : t = 1, 2, . . . , n}, we have Xt =
∑t−1

i=0 φ
iut−i and E(Xt) = 0, E(X2

t ) = σ2
u

∑t−1
i=0 φ

2i.
Furthermore the autocovariances are

cov(Y2t+1, Y2t) = E(X2t+1X2t) = σ2
uφ
∑2t−1

i=0 φ
2i ,

cov(Y2t, Y2t−1) = E(X2tX2t−1) = σ2
uφ
∑2t−2

i=0 φ
2i ,

cov(Y2t+1, Y2t−1) = E(X2t+1X2t−1) = σ2
uφ

2∑2t−2
i=0 φ

2i ,

hence

Ψ12 = φσ2
u

(
2t−1∑
i=0

φ2i ,

2t−2∑
i=0

φ2i

)
, Ψ22 = σ2

u

 ∑2t
i=0 φ

2i φ2∑2t−2
i=0 φ

2i

φ2∑2t−2
i=0 φ

2i ∑2t−2
i=0 φ

2i

 .
B.2. The affine regression of Y2t on

(
Y2t+1 , Y2t−1

)′
when |φ| �= 1

In general we have:

EL

[
Y2t|
(
Y2t+1 Y2t−1

)]
= E(Y2t) + Ψ12Ψ−1

22

(
Y2t+1 − E(Y2t+1)
Y2t−1 − E(Y2t−1)

)
.

Using the fact that, for |φ| �= 1,

k∑
i=0

φ2i =
1 − φ2(k+1)

1 − φ2 ,
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we obtain the following expressions:

Ψ12 =
φσ2

u

1 − φ2

(
1 − φ4t , 1 − φ4t−2

)
, Ψ22 =

σ2
u

1 − φ2

 1 − φ4t+2 φ2(1 − φ4t−2)

φ2(1 − φ4t−2) 1 − φ4t−2

 ,

hence

EL

[
Y2t|
(
Y2t+1 Y2t−1

)]
= E(Y2t) + φ

1+φ2

(
1 1
) ( Y2t+1 − E(Y2t+1)

Y2t−1 − E(Y2t−1)

)
= a+ β(Y2t+1 + Y2t−1),

where a = E(Y2t) − β[E(Y2t+1) + E(Y2t−1)] and β = φ/(1 + φ2). Since for all t ≥ 0, E(Yt) =
φkE(Yt−k) , k = 0, 1, . . . , t, a = 0.

B.3. The affine regression of Y2t on
(
Y2t+1 , Y2t−1

)′
when |φ| = 1

When |φ| = 1, we have

Ψ12 = φσ2
u

(
2t , 2t− 1

)
, Ψ22 = σ2

u

(
2t+ 1 2t− 1
2t− 1 2t− 1

)
,

hence EL

[
Y2t|
(
Y2t+1 Y2t−1

)]
= φ

2 (Y2t+1 + Y2t−1) = φ
1+φ2 (Y2t+1 + Y2t−1). Note that from the

derivations in the case where |φ| �= 1, a = 0 irrespective to the value of φ. In any case, the residual
variance is

V
[
Y2t − EL

[
Y2t|
(
Y2t+1 Y2t−1

)] ]
= V(Y2t) − Ψ12Ψ−1

22 Ψ′
12 =

σ2
u

1 + φ2 , φ ∈ (−∞,∞).
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