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RÉSUMÉ 

 
 Cet article s'occupe des mesures de la diversité. Pour une notion donnée de 

similarité des objets dans les ensembles à mesurer, nous caractérisons des mesures 

de diversité descriptives. 
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ABSTRACT 

 

 This paper analyzes the measurement of the diversity of sets based on the 

dissimilarity of the objects contained in the set. We discuss axiomatic 

approaches to diversity measurement and examine the considerations underlying 

the application of specific measures. Our focus is on descriptive issues: rather 

than assuming a specific ethical position or restricting attention to properties that 

are appealing in specific applications, we address the foundations of the 

measurement issue as such in the context of diversity. 
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1 Introduction

Does the newly created, left-wing political party increase the diversity of political options

available to the voters in a country? Will the addition of several blue-colored passenger

trains to the MARTA system increase the diversity of transportation modes in the city

of Atlanta? Would the extinction of giant pandas reduce the diversity of species on the

planet? How does the preservation of a native American language add to the diversity of

world cultures? Has the increase in concentration in the Canadian print and television

media industry that occurred over the last few years reduced the diversity of opinions

and viewpoints to which the general public gets exposed? The answer to each of these

questions requires the measurement of diversity. It is thus clear that the problem of mea-

suring diversity may arise in the context of a very broad array of issues which often figure

in public discussions and debates. While diversity may be desirable in many contexts, it

is not difficult to think of situations where greater diversity is not necessarily beneficial.

For instance, adding a new member with very similar positions to a coalition of agents

may improve the strength and cohesion of the group, which may enable it to pursue its

objectives more effectively and, consequently, a reduction in diversity may be considered

a good thing from the viewpoint of the group members.

In a more abstract context, in recent years, the measurement of diversity has become

an increasingly important issue in the literature on the ranking of opportunity sets in terms

of freedom of choice, where opportunity sets are interpreted as sets of options available to

a decision maker and alternative opportunity sets are assumed to reflect possibly different

amounts of freedom of choice for the decision maker.

The purpose of this paper is to present an integrated approach and a discussion of

some measures of diversity that have been proposed in the literature in contributions such

as Weitzman (1992), Pattanaik and Xu (2000) and Bossert, Pattanaik and Xu (2001); see

also Weikard (1998) and Nehring and Puppe (2002) for discussions.

Consider the first question we posed at the beginning of this paper: does the newly

created, left-wing political party increase the diversity of political options for the voters

in a country? For convenience, let us call this left-wing political party l. We consider two

alternative political scenarios regarding the situation before the creation of the new party.

In the first scenario, to be called situation α, there are initially five political parties a, b,

c, d and e, of which parties a to d can all reasonably be described as rightist parties with

only slight differences between their platforms, and e is a centrist party. In the second

scenario, to be called situation β, there are initially five parties f , g, h, i and j. Assume
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that the first four of those are leftist parties with only minor differences between their

platforms, that the difference between the platform of l and that of each of f , g, h and i

is also very minor and, finally, that j is a centrist party. Since l is a leftist party and is

very dissimilar to the existing parties in situation α, it seems to make sense to postulate

that when we add l to the set of already existing parties in this situation, the addition

significantly increases the diversity of political ideologies available to the voters. On the

other hand, since l is very similar to the parties that are already present in β, when we add

l in this situation, such an addition does not appear to change significantly the diversity

of political platforms available to the voters. For similar reasons, it also seems that the

new set {a, b, c, d, e, l} in situation α is characterized by a greater degree of diversity than
the new set {f, g, h, i, j, l} in situation β.
The gist of this simple example is that, when assessing the diversity of a set of options,

the extent to which the options in the set under consideration are similar to each other

should be a relevant factor. To reiterate this point, let us consider another of the questions

posed earlier. In assessing the impact of preventing a native American language from

becoming extinct on the diversity of cultures, it seems clear that the degree of diversity

preserved depends on the language in question and its relation to other languages. If the

language in question is a variation or a dialect of several other languages that continue

to exist, the loss of this language would appear to entail a much less serious reduction in

diversity as compared to a situation where no other surviving language is very similar to

the language under consideration. Again, it is obvious that information concerning the

degree of similarity between the options is of crucial importance. A moment’s reflection

should convince us that the answers to the other questions posed earlier also require

consideration of the similarities of the options involved.

How does one view the notion of similarity in this context? One plausible view is

that, for the applications we have in mind, similarity of options is a matter of objective

judgment or social norms. Thus, the issue of whether two options are similar is decided

by appealing to some objective judgment or social norms rather than to the opinion of

individual agents. For example, in analyzing whether two political parties are similar, one

can examine their differences with respect to several important issues such as tax policy,

policy on education, environmental policy, national defense, etc.. If there are significant

differences between the two parties with respect to the identified important issues, we can

say that the two parties are not similar; if, on the other hand, the differences between

the two parties with respect to the identified issues are very small, we can say that they

are similar. However, we may not be satisfied with a framework that allows for only two
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‘levels’ of similarity by stipulating that two alternatives are either similar or dissimilar;

instead we may want to opt for an informationally richer formulation that would permit

more degrees of similarity between options. In this paper, we shall consider some of these

alternative frameworks.

If the notion of similarity refers to a relation between two options, the notion of

diversity reflects the collective nature of similar or dissimilar options when they form a

set as a whole. We view diversity as one of several criteria which may be considered

revelant for the overall assessment of sets of options. As such, we do not suggest that

a diversity ranking of alternative sets of options is to be identified with a measure of

desirability or undesirability. Furthermore, we do not examine the ethical arguments

involved in discussions as to whether diversity is desirable and, if so, to what extent.

Note that, as mentioned earlier, the desirability (or lack thereof) of diversity seems to

depend on the specific context under consideration, whereas the measurement of diversity

as such can, as suggested above, be analyzed in a general setting. Instead, we focus on

the descriptive contents of the notion of diversity and alternative ways of measuring it.

The remainder of the paper proceeds as follows. The next section provides, along with

our basic definitions, a discussion of distance indices designed to measure the dissimilarity

between individual objects in the universal set under consideration. In particular, two

types of measures are introduced: ordinal distance functions and ratio-scale distance

functions. Section 3 discusses the ordinal approach, and we present a characterization of

a specific measure which is due to Pattanaik and Xu (2000). In section 4, we move on to

ratio-scale distances and discuss the structure of a diversity measure which was introduced

in Bossert, Pattanaik and Xu (2001) and which is based on ratio-scale distances. We

conclude with a discussion of the relationship between this measure and a proposal due

to Weitzman (1992).

2 Distance and diversity

We use X to denote the universal set of options with at least two elements. Options in

X can have alternative interpretations. For example, these options may be thought of as

ordinary commodity bundles. They may also be interpreted as different political parties

in a country, or different species in the world, etc.. K is used to denote the class of all
non-empty and finite subsets of X. The interpretation of the elements of K depends, of
course, on the interpretation of the options in X.

We think of the diversity of a set as a characteristic with an ordinal interpretation
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and, thus, seek to develop ordinal measures of diversity: all we want to do is to establish

a ranking of sets with respect to their relative diversity. Thus, we want to be able to

make statements such as ‘set A is more diverse than set B’ but we do not attempt

to perform any other comparisons, such as the comparison of differences or ratios of

diversity. However, even though our interpretation of a diversity measure applied to sets

of options is ordinal, this is consistent with richer informational environments when it

comes to diversity comparisons of individual options. By way of analogy, note that, in

social choice theory, it is typically attempted to construct a social ranking of alternatives

but this ordinal interpretation of a social ranking certainly allows this ranking to take

into account more than just ordinal and interpersonally noncomparable information at

the individual level (for example, the utilitarian ordering compares any two alternatives

on the basis of their respective sums of individual utilities). See Bossert and Weymark

(forthcoming) for a detailed discussion of information assumptions in social choice theory.

Given this ordinal interpretation, we can employ a binary relation � on K as a measure
of diversity. Thus, the interpretation of this relation is that we have A � B for any two
sets A and B in K if and only if the diversity associated with the set A is greater than or
equal to the diversity of the set B. We assume that the diversity ranking � is reflexive
and transitive. A diversity relation on K is reflexive if and only if each element of K is at
least as diverse as itself, that is, A � A for any set A in K. The relation � is transitive if
and only if chains of relative diversity are respected in the sense that if one set is at least

as diverse as another and the second set is, in turn, at least as diverse as a third, then the

first set is at least as diverse as the third. That is, for any three sets A, B and C in K,
A � B and B � C together imply A � C. The diversity relations characterized in this
paper are also complete, which means that any two distinct alternatives are comparable

with respect to their diversity: for any two sets A and B with A �= B, we have A � B
or B � A. We use the term quasi-ordering for a reflexive and transitive relation, and an
ordering is a complete quasi-ordering.

Given a diversity relation � with the interpretation ‘at least as diverse as,’ we can
define the associated relations ‘more diverse than’ and ‘as diverse as.’ These relations are

given by the asymmetric part � and the symmetric part ∼ of �, respectively. That is,
for any two sets A and B in K, we have A � B if and only if A is at least as diverse as B
but it is not the case that B is at least as diverse as A (formally, A � B and not B � A)
and A ∼ B if and only if A is at least as diverse as B and it is also true that B is at least
as diverse as A (in symbols, A � B and B � A).
The purpose of this paper is to identify diversity rankings � with plausible properties.
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In order to make reasonable progress in establishing rankings of sets in K, it seems clear
that we first need to introduce some primitive notion of similarity between the different

individual options inX in terms of diversity. For example, if we have to make a judgement

about whether {x, y} is associated with more diversity than {z, w}, then, inevitably, we
have to face the issue of how similar x and y are and how similar z and w are. We

distinguish between two broad frameworks, depending on the informational contents of

a measure of dissimilarity of options. The first one uses an ordinal notion of the degree

of dissimilarity (or, equivalently, the distance) between any two options in X while, in

the second framework, the notion of the degree of dissimilarity or distance between two

options is measured by means of a ratio scale. We discuss both of these informational

environments in turn in the following two subsections.

2.1 Ordinal distances between options

In the ordinal case, the only significant information that can be used is a ranking of

distances between pairs of elements of X. We use a relation R defined on X ×X for that
purpose. That is, for any four alternatives x, y, z and w in X, the statement (x, y)R(z, w)

is interpreted as ‘the distance (or dissimilarity) between x and y is greater than or equal

to the distance (or dissimilarity) between z and w.’ We use P for the asymmetric part

of R and I for the symmetric part of R, that is, (x, y)P (z, w) if and only if (x, y)R(z, w)

and not (z, w)R(x, y), and (x, y)I(z, w) if and only if (x, y)R(z, w) and (z, w)R(x, y). The

statement (x, y)P (z, w) means that the distance between x and y exceeds the distance

between z and w, and (x, y)I(z, w) is interpreted as the distance between x and y and

the distance between z and w being equal. We assume that R is reflexive and complete.

Furthermore, in line with the interpretation of this ordinal measure of distance between

options, we require that: (i) (x, y)R(z, z) for any three options x, y and z; and (ii)

(x, y)R(y, x) for any two objects x and y. The first of those two requirements says that

the distance between any two options cannot be less than the distance between an option

and itself. As an immediate consequence of this property, it follows that the distance

between an arbitrary option and itself is the same as the distance between any other

option and itself. The second of those two assumptions reflects the similarly plausible

hypothesis that the distance between any two options x and y is the same as the distance

between y and x.

An important special case of the ordinal framework obtains when R has exactly two

equivalence classes. That is, X ×X can be partitioned into two sets D and S such that
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(x, y)I(z, w), (x′, y′)I(z′, w′) and (x, y)P (x′, y′) for all pairs (x, y), (z, w) in D and for all

pairs (x′, y′), (z′, w′) in S. We refer to this special case as a simple ordinal framework and,

in that case, R is said to be a simple ordering on X ×X.
In a simple ordinal framework, a severe constraint is imposed on the relation R. If R

has only two indifference classes, it is impossible to express the judgment that, for example,

x and y are more dissimilar than z and w, and z and w are, in turn, more dissimilar than u

and v. All that we are able to express within a simple ordinal framework is the distinction

between one ‘high’ degree of similarity and one ‘low’ degree of similarity—that is, any two

alternatives x and y are either similar (which is the case if the pair (x, y) is an element of

S) or dissimilar (the case where (x, y) is in D). However, as will turn out in the following

section, the simple ordinal framework allows us to obtain an interesting axiomatization of

a specific diversity relation, whereas matters are still somewhat unsettled for more general

ordinal measures of diversity.

2.2 Ratio-scale distances between options

If the distance between individual options is measured by means of a ratio scale, more

than just ordinal information can be used in constructing a diversity ordering of sets of

options. In addition to ordinal distance comparisons such as ‘the distance between x

and y is greater than or equal to the distance between z and w,’ a ratio scale permits a

much larger class of statements regarding possible relationships between distances. For

instance, statements such as ‘the distance between x and y is more than twice the distance

between z and w’ are meaningful if distance is measured by a ratio scale. This is the case

because a ratio scale is unique up to increasing linear transformations only: the only

distance measures that carry the same information as a given ratio-scale measure are

positive multiples of the original measure. In contrast, if an ordinal measure of distance

is employed, all increasing transformations of the measure carry the same information.

To give a more precise formulation of this observation, we need more than just an

ordering of individual distances. In particular, we use a function d that assigns to each

pair of alternatives x and y a distance d(x, y). This function is called a distance function

or a distance index. We assume that d(x, x) = 0 for all x in X, d(x, y) > 0 for all distinct

x and y in X, and d(x, y) = d(y, x) for all x and y in X. That the distance between

two options is equal to zero if the two options coincide and positive if they do not is a

plausible restriction. The remaining restriction is a symmetry condition, analogous to

the one employed in the ordinal case: the distance between x and y is the same as the
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distance between y and x. If, in addition, the triangle inequality (which requires that

d(x, y) + d(y, z) ≥ d(x, z) for any three options x, y and z) is satisfied, the function d is
called a metric. Since the triangle inequality is not needed, we do not impose it in this

paper; however, the results discussed here remain valid if this requirement is added.

The crucial assumption regarding d is that this function is a ratio scale, that is, if all

values d(x, y) are replaced with γd(x, y) for any γ > 0, the resulting measure contains

the same information as d. Therefore, comparisons such as the one mentioned above are

possible—if d(x, y) is more than twice the distance d(z, w), then γd(x, y) is more than

twice γd(z, w) for any positive value of γ. That is, with an interpretation as a ratio scale,

the distance index is unique up to increasing linear transformations. By contrast, if we

think of a distance measure as a representation of a distance ordering R as defined in the

previous subsection, the index is unique up to arbitrary increasing transformations, not

only up to those that are linear. Ratio scales provide, therefore, a richer informational

framework and allow for greater flexibility in designing diversity orderings of sets.

3 Diversity orderings based on ordinal distances

We start with the simple ordinal framework. As defined in the previous section, this

means that R has two equivalence classes only and, as a consequence, any two options x

and y are either similar ((x, y) is in S) or dissimilar ((x, y) is in D).

In order to introduce a plausible diversity ranking in this setting, we require some

further definitions. A set A in K is homogeneous if and only if (x, y) is an element of S for
all x and y in A. Therefore, a homogeneous set consists of options that are all pairwise

similar to each other.

A partition of a set A in K is a collection of nonempty and disjoint subsets of A such
that the union of these subsets is the set A itself. That is, a partition of a set A is a way

of splitting up (partitioning) the elements of A into different subsets. A similarity-based

partition of a set A in K is a partition of A such that each component of the partition
is homogeneous. Because K is assumed to be the set of all nonempty and finite subsets
of X, each A in K can be written as A = {a1, . . . , am} where m is the finite number of
elements in A. It follows that, for any A in K, there exists at least one similarity-based
partition, namely, the partition {{a1}, . . . , {am}} where each component is a singleton.
Suppose now that the universal set of options X is finite. In this case, the number

of elements contained in any nonempty subset A of X is a number between one and the

number of elements in X. This implies that the number of components of any similarity-
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based partition of A is between one and the number of elements in X. Because there

exists at least one similarity-based partition, this implies that there exists a similarity-

based partition with a minimal number of components. Clearly, this similarity-based

partition with a minimal number of components need not be unique. For example, if

A = {x, y, z} and S (the set of similar pairs) consists of the two pairs (x, y) and (y, z),
there are three similarity-based partitions of A, namely, {{x}, {y}, {z}}, {{x, y}, {z}}
and {{x}, {y, z}}. Both {{x, y}, {z}} and {{x}, {y, z}} are similarity-based partitions
with minimal number of components given by two.

Given the existence of a similarity-based partition with a minimal number of com-

ponents for each subset A of X, we can define the following similarity-based diversity

ordering �s. For all sets A and B in K, A �s B if and only if the minimal number of
components of a similarity-based partition of A is greater than or equal to the minimal

number of components of a similarity-based partition of B.

To illustrate this definition, consider the following example. Let X = {x, y, z} and
S = {(x, y), (y, z)}. We obtain

K = {{x}, {y}, {z}, {x, y},{x, z},{y, z},{x, y, z}}.

The minimal number of components of a similarity-based partition is equal to 1 for the

sets {x}, {y}, {z}, {x, y} and {y, z}, whereas this minimal number is equal to 2 for the
sets {x, z} and {x, y, z}. Therefore, we obtain the similarity-based diversity ordering

{x, z} ∼s {x, y, z} �s {x} ∼s {y} ∼s {z} ∼s {x, y} ∼s {y, z}.

The reason why this ordering is of particular interest is that it can be given a plausible

axiomatic justification: it is the only quasi-ordering of opportunity sets satisfying the

axioms introduced below.

The first axiom is rather uncontroversial. Its counterpart in the context of ranking

opportunity sets in terms of freedom of choice was introduced and discussed in Jones and

Sugden (1982) and in Pattanaik and Xu (1990). It states that any two situations with no

diversity at all (that is, two sets of options each of which contains a single element only)

should be ranked as equally diverse by �. The intuitive appeal of this condition in the
present context is evident.

Indifference between no-diversity situations: For any two alternatives x and y in

X, {x} ∼ {y}.

Our second condition is a monotonicity axiom. It is concerned with diversity compar-

isons of an existing set A in which all the elements in A are similar to each other and an
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enlarged set where an option x that is outside of A is added to A. Information regarding

the similarity of existing options and the option to be added is explicitly taken into ac-

count: if the added option x is similar to the (pairwise similar) options that are already

present in A, it seems that the new option does not increase the amount of diversity. If, on

the other hand, x is dissimilar to at least one of the alternatives in A, adding this alterna-

tive does lead to an increase in diversity. To illustrate, consider again one of the examples

discussed earlier. If a newly created left-wing party l is similar to the existing parties a,

b, c, d and e that are left-wing parties, then it can be argued that the set {a, b, c, d, e, l} of
parties offers the same amount of diversity of political ideologies as the set {a, b, c, d, e};
if, however, the existing parties are all rightist, then it seems plausible to argue that the

set {a, b, c, d, e, l} offers more diversity of ideologies than the set {a, b, c, d, e}. Formally,
the axiom monotonicity is defined as follows.

Monotonicity: For any homogeneous set A in K and for any alternative x that is not in
A,

(i) if (x, y) is in S for all y in A, then A ∪ {x} ∼ A;
and

(ii) if there is a y in A such that (x, y) is in D, then A ∪ {x} � A.

We require one more axiom to characterize the similarity-based diversity ordering.

This condition deals with the response of a ranking when sets of options are merged. It is

the diversity analogue of a weakening of an axiom proposed by Sen (1991) in the context

of the measurement of freedom of choice. Consider two sets A and B such that A is

at least as diverse as B and two sets C and D such that C is at least as diverse as D.

Moreover, suppose C and D are homogeneous and A and C as well as B and D do not

have any common elements. A possible composition-consistency property would require

that the set obtained by merging A and C is at least as diverse as the set obtained by

merging B and D. However, the axiom proposed by Pattanaik and Xu (2000) is even

weaker: it requires that this property of the merged set applies only in situations where

the minimal number of components of any similarity-based partition of the merged set

A∪C exceeds the minimal number of components of any similarity-based partition of A.
That is, the requirement only applies in situations where adding the elements of C to A

actually represents a ‘real’ augmentation in terms of diversity as expressed by means of

minimal similarity-based partitions. In addition, we require an analogous strict relation to

be respected by set compositions of the above-described kind. This leads to the following

axiom.

9



Composition consistency: For any two sets A and B in K and for any two homogeneous
sets C and D in K such that the intersection of A and C and the intersection of B and D
are empty and, furthermore, the minimal number of components of any similarity-based

partition of the merged set A ∪ C exceeds the minimal number of components of any
similarity-based partition of A,

(i) if A � B and C � D, then A ∪ C � B ∪D;
and

(ii) if A � B and C � D, then A ∪ C � B ∪D.

We now obtain the following characterization of the similarity-based diversity ordering,

due to Pattanaik and Xu (2000); see their paper for a proof.

Theorem 1 Suppose X is finite and R is a simple ordering on X×X. A quasi-ordering �
on K satisfies indifference between no-diversity situations, monotonicity and composition
consistency if and only if � is equal to the similarity-based diversity ordering �s.

We conclude this section with a brief discussion of the general ordinal framework, that

is, we examine the construction of diversity rankings in an ordinal framework that is not

necessarily a simple ordinal framework. In this case, the simple dichotomy between pairs

of similar options and pairs of dissimilar options no longer applies—we may have a much

richer scheme. This framework has not received much attention in the literature. We do,

however, consider it worthwhile to include a few remarks on possible issues that arise in

that case here.

Formally, there is an analogy between our problem of establishing a diversity ranking

on K, given the relation R defined on X×X and the problem (discussed in some parts of
the existing literature on the ranking of sets) of ranking finite subsets of a set of objects,

given a relation defined on this set of objects. This analogy applies if the objects in the

universal set are not mutually exclusive; see Barberà, Bossert and Pattanaik (forthcoming)

for a review of some contributions on this latter problem.

One way of bringing out this analogy is to visualize in the following fashion our problem

of ranking the elements of K in the general ordinal framework. For all A ∈ K, let ZA
denote the set of all pairs of distinct alternatives belonging to A. Note that ZA is empty if

A has exactly one element. The task of ranking two sets A and B by means of a ranking

� can be interpreted as the task of ranking ZA and ZB . More precisely, suppose R is a
relation defined on X ×X. One can now think of the process of deriving the relation �
on K as consisting of two steps. In the first step, given the relation R, we derive a relation
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�′ defined on the class of all ZA, where A is in K. In the second step, the relation �
defined on K is induced by �′ in the following fashion: for any two sets A and B in K,
we let A � B if and only if ZA �′ ZB . The first step is the familiar problem (discussed in
the literature on ranking sets) of ranking finite subsets of a universal set, given a relation

defined on this universal set, where the options in the universal set are not mutually

exclusive.

Note, however, that there is one important difference between the problem as it is

usually posed in the literature on ranking sets and our problem of deriving a relation �′

on the class of all ZA with A ∈ K given the relation R. The existing literature typically
treats the problem as one of ranking either all subsets or all non-empty subsets of a given

universal set. In our case, the relation �′ is defined merely on the class of all ZA such
that A ∈ K which, clearly, does not include all non-empty subsets of X×X. Despite this
difference, however, the existing results on the ranking of sets suggest some interesting

questions in our context. For example, given the relation R, what are necessary and

sufficient conditions for the relation �′ to have an additive real-valued representation?
That is, what are necessary and sufficient conditions under which there exists a function

u such that u represents R (that is, u ranks all pairs in X×X in the same way as R) and,
in addition, for any two sets A and B in K, we have ZA �′ ZB if and only if either ZB
is empty or both ZA and ZB are non-empty and

∑
(a,a′)∈ZA u(a, a

′) ≥ ∑(b,b′)∈ZB u(b, b′)?
This question is of interest because, as we have noted earlier, the relation �′ can be used
to induce, in a straightforward fashion, the relation � that we are ultimately interested
in. Given the formal difference noted above, the answer to this question does not follow

immediately from the corresponding results in the existing literature. This is an example

of a problem that merits further investigation.

4 Diversity orderings based on ratio-scale distances

We now consider a framework that allows us to use more than just ordinal information

concerning the dissimilarity between individual objects in X. In particular, we use a

distance function d as introduced in Section 2 that we interpret as a ratio scale—that is,

the function is unique up to increasing linear transformations. For any two objects x and

y in X, the value d(x, y) is the distance between x and y. Given this measure of distance

between objects, we can define the notion of distance between an object x and a set A as

d(x,A) =




0 if A = {x},
min{d(x, y) | y ∈ A \ {x}} if A �= {x}.
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According to this definition, the distance betweeen a singleton set and its constituent

element is zero, and the distance between any other combination of a set and an element

is positive. Our results would not change if we amended this definition to one that is more

commonly used and assigns a zero distance whenever the object under consideration is an

element of the corresponding set; we have chosen the above formulation merely because

it is more convenient for the exposition of our analysis.

The idea underlying the diversity measure we propose in this section is to aggregate

the distances between objects and other elements (if any) in a set A in a systematic

and plausible way. To do so, (at least) two points need to be observed: we have to

avoid the ‘multiple-counting’ of distances and, on the other hand, we want to ensure

that the distances between very dissimilar objects are accounted for properly. To take

due consideration of those requirements, we employ an iterative procedure for each set,

which ensures that multiple-counting is ruled out. We keep track of the distance between a

specific element of a set and the other elements of the set (if there are any), then eliminate

this element, and repeat the procedure until the set is exhausted. This procedure is well-

defined because we only compare finite sets. What is important for the specific properties

of this procedure is, of course, the choice of the element to be eliminated at each stage

of the iteration. To ensure that substantial dissimilarities are accounted for in a suitable

manner, we employ a leximin elimination criterion with respect to the minimal distance

between an object in a set and the remaining elements of the set.

In more precise terms, the iterative procedure used to define a measure of diversity

can be described as follows. Consider any set A in K. For any x in A, we record the
distances between x and all elements of A (including x itself) in a vector δA(x). To

illustrate, consider the following example. Suppose we have a set A = {x, y, z, w} and
the distances between the objects in A are given by d(x, y) = 2, d(x, z) = 1, d(x, w) = 2,

d(y, z) = 3, d(y, w) = 2 and d(z, w) = 4. Note that these definitions completely specify

all pairwise distances between objects in A; all distances that are not explicitly written

out are obtained by the symmetry of the function d and the property that the distance

between any object and itself is equal to zero. The vector of distances between x and all

objects in A (including x itself) is given by δA(x) = (0, 2, 1, 2). Analogously, we obtain

δA(y) = (2, 0, 3, 2), δA(z) = (1, 3, 0, 4) and δA(w) = (2, 2, 4, 0).

After having obtained these vectors for each object in A, we compare them according

to the leximin criterion. That is, we begin with the smallest component of each of those

vectors and compare their smallest distances. If there is a unique option that has the

smallest minimal distance among all minimal distances, we use it as the first object in
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our elimination procedure for the set A and call it a1. If there are several objects in A

with a smallest minimal component of their respective vector as constructed above, we

compare their next-to-minimal components, and so on. If this process yields a unique

object after a finite number of steps, we call this object a1. If we end up with more than

one object after this lexicographic procedure, it does not matter which one we pick and

we select an arbitrary one among them and call it a1. Because each set A has a finite

number of elements, this procedure is well-defined and terminates after a finite number

of comparisons.

We now record the value of d(a1, A), eliminate a1 and repeat the procedure with A

replaced by A \ {a1}. That is, we find an element a2 in A \ {a1} whose vector of distances
is a smallest vector according to the leximin criterion, record the value of d(a2, A \ {a1}),
and eliminate a2 from A \ {a1} in order to repeat the procedure with A \ {a1} replaced
by A \ {a1, a2}. Again appealing to the finiteness of A, we conclude that this proce-
dure terminates after a finite number of iterations, and we have obtained the distances

d(a1, A), d(a2, A\{a1}), . . . , d(am−1, A\{a1, . . . , am−2}), d(am, {am}), where m is the num-
ber of elements in A.

We use the above example again to illustrate the iterative procedure. According to the

leximin criterion, x is associated with the unique smallest vector of distances. Its minimal

component is equal to 0, as is the minimal component of each of the other objects. The

next-to-smallest distance in δA(x) is equal to 1, and so is the next-to-smallest distance in

δA(z). On the other hand, the corresponding value for δA(y) and for δA(w) is 2. Thus, we

move on to compare the third-smallest components of δA(x) and δA(z). We obtain values

of 2 for x and 3 for z and, thus, our object a1 is given by x. The value of d(a1, A) is therefore

equal to d(x,A) = 1. Now we repeat the procedure with A \ {a1} = A \ {x} = {y, z, w}
instead of A. We obtain δA\{x}(y) = (0, 3, 2), δA\{x}(z) = (3, 0, 4) and δA\{x}(w) = (2, 4, 0).

The smallest of these vectors according to the leximin criterion is that corresponding to

y and, thus, we set a2 = y and obtain d(a2, A \ {a1}) = d(y, A \ {x}) = 2. This leaves
us with the set A \ {x, y} = {z, w} and the vectors of distances δA\{x,y}(z) = (0, 4)
and δA\{x,y}(w) = (4, 0). Clearly, either z or w can be chosen for a3 now, and we obtain

d(a3, A\{a1, a2}) = d(z, A\{x, y}) or d(a3, A\{a1, a2}) = d(w,A\{x, y}) which, in either
case, yields d(a3, A \ {a1, a2}) = 4. Obviously, d(a4, A \ {a1, a2, a3}) = d(a4, {a4}) = 0 for
either choice of a3 (and, thus, of a4).

Finally, we define the leximin diversity ordering �� as follows. For any two sets A and
B in K, we have A �� B if and only if the sum d(a1, A)+ . . .+d(am, {am}) is greater than
or equal to the sum d(b1, B) + . . .+ d(bn, {bn}), where n is the number of elements in B
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and the b1, . . . , bn are obtained for B in the same way the a1, . . . , am are obtained for A.

Going back to our example, the sum d(a1, A) + d(a2, A \ {a1}) + d(a3, A \ {a1, a2}) +
d(a4, A \ {a1, a2, a3}) is given by

d(x, {x, y, z, w}) + d(y, {y, z, w}) + d(w, {z, w}) + d(z, {z}) = 1 + 2 + 4 = 7.

The ranking of A and any other set B is now determined by computing the corresponding

sum for B and comparing it to the value of 7 obtained for A.

We now turn to a characterization of ��. The first axiom we use is another monotonic-
ity condition. It applies to diversity comparisons of sets with at most two elements, which

is why we refer to it as simple monotonicity. The axiom requires that the ranking of two

sets with at most two elements each is determined by the individual distance between the

two elements. This is a very plausible requirement: if there is a single individual distance

only within each of two sets, then this single distance should be considered the aggregate

distance for each set as well in comparing the two.

Simple monotonicity: For all objects x, y, z, w in X, {x, y} � {z, w} if and only if
d(x, y) ≥ d(z, w).

The next axiom expresses an invariance property with respect to certain additions to

sets. Consider two sets A and B, an object x that is not in A and an object y that is

not in B. The axiom requires that, under some circumstances, the relative ranking of A

and B according to � is unchanged if x is added to A and y is added to B. To specify
the conditions under which the axiom applies, suppose that, according to the leximin

criterion, the vector of distances associated with x is a smallest element within the set

that consists of A augmented by x and, analogously, the distance vector of y within

B ∪ {y} is a smallest element. Finally, suppose that the distance between x and A is the
same as the distance between y and B. If all those requirements are satisfied, the axiom

independence requires the relative ranking of A and B to be the same as the relative

ranking of A ∪ {x} and B ∪ {y}. The underlying idea is that simultaneous additions of
elements to two sets such as those described above do not change the relative diversity of

the two sets.

Independence: For any two sets A and B in K, for any two objects x and y such that
x is not in A and y is not in B, if the vector of distances for x within A∪{x} is minimal,
the vector of distances for y within B∪{y} is minimal and d(x,A) = d(y, B), then A � B
if and only if A ∪ {x} � B ∪ {y}.
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For the formulation of our last axiom, we introduce the notion of a link option. Con-

sider two two-element sets {x, y} and {z, w} such that x and y are distinct, and so are z
and w. An object u that is different from z and from w is a link option of {z, w} relative
to {x, y} if it has the following properties. The object u has to be ‘between’ z and w
in the sense that neither the distance between u and z nor the distance between u and

w exceeds the distance between z and w. Furthermore, the distance between x and y

must be equal to the sum of the distances between z and w and between u and {z, w}.
That is, u provides a ‘link’ between z and w that reproduces the distance between x and

y. This notion of a link option is related to Weitzman’s (1992) link property. Weitzman

postulates, for every set A in K, the existence of a ‘link species’ defined as an option x
of A such that the value of a representation of the diversity ordering at A is equal to

the sum of the value of this representation at A \ {x} and the distance between x and
A\{x}. Weitzman’s requirement is not suitable for our context, however: its formulation
requires more than just an ordinal interpretation of a diversity measure and, thus, cannot

be expressed in terms of a diversity ordering �. For that reason, we believe that our
notion of a link element is easier to justify.

The axiom link indifference requires that adding a link option of a set {z, w} relative
to a set {x, y} leads to a set that is indifferent to {x, y}, provided that the elements in each
set are distinct and the set {x, y} is more diverse than the set {z, w}. This requirement
states that the addition of an object to a set for which it is a link option offsets the higher

diversity (provided that this diversity actually is higher) of a set with respect to which the

object is a link option. This requirement is in line with the definition and interpretation

of a link option.

Link indifference: For all objects x, y, z, w, u in X such that x �= y and z, w and u are
pairwise distinct, if {x, y} � {z, w} and u is a link option of {z, w} relative to {x, y}, then
{x, y} ∼ {z, w, u}.

These axioms can be used to provide a characterization of the leximin diversity order-

ing. We need a regularity requirement that is, in essence, a richness property regarding

the universal set X and the distance function d. The presence of such a condition is

required because without it, the link-indifference property would not have any bite. We

obtain the following result which is due to Bossert, Pattanaik and Xu (2001); see that

paper for a proof.

Theorem 2 Suppose X is an infinite universal set. Furthermore, suppose X and d are

such that, for all numbers s and t with t ≤ s, there exist options x, y and z such that
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t = d(x, y) ≤ d(x, z) ≤ d(y, z) = s. A diversity ordering � satisfies simple monotonicity,
independence and link indifference if and only if �=��.

It is worth noting the connection between our diversity measure �� and the one in-
troduced by Weitzman (1992). Weitzman proposes ameasure that is defined implicitly

as the solution of a recursive programming problem; see Weitzman (1992) and Bossert,

Pattanaik and Xu (2001) for a precise definition. We think that, owing to this implicit

way of defining the measure, the calculation of the measure as well as its properties are

not very transparent. Thus, it is a useful observation that his measure coincides with

ours, the calculation of which can be done explicitly by means of the iterative procedure

discussed earlier. As a consequence, the above characterization result can also be seen as

a further justification of Weitzman’s approach.
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