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RESUME

Cet article propose des procédures exactes pour tester la spécification SURE
(régressions empilées) dans le contexte des régressions linéaires multivariées, i.e. si les
perturbations des différentes équations sont corrélées ou non. Nous appliquons la
technique des tests de Monte Carlo (MC) [Dwass (1957), Barnard (1963)] pour obtenir des
tests d'indépendance exacts fondés sur les criteres du quotient de vraisemblance (LR) et
du multiplicateur de Lagrange (LM). Nous suggérons aussi un critere du type quasi-
quotient de vraisemblance (QLR) dérivé sur base des moindres carrés généralisés
réalisables (FGLS). Nous démontrons que ces statistiques sont libres de parameétres de
nuisance sous I'hypothése nulle, ce qui justifie I'application des tests de Monte Carlo. Par
ailleurs, nous généralisons le test exact proposeé par Harvey et Phillips (1982) au contexte
des équations multiples. En particulier, nous proposons plusieurs tests induits basés sur
des tests de type Harvey-Phillips et nous suggérons une technique basée sur des
simulations afin de résoudre le probleme de combinaison de tests. Nous évaluons les
propriétés des tests que nous proposons dans le cadre d'une étude de Monte Carlo. Nos
résultats montrent que les tests asymptotiques usuels présentent de sérieuses distorsions
de niveau, alors que les tests de MC controlent parfaitement le niveau et ont une bonne
puissance. De plus, les tests QLR se comportent bien du point de vue de la puissance; ce
résultat est intéressant vu que les tests (multivari€és) que nous proposons sont basés sur
des simulations. La puissance des tests de MC induits augmente sensiblement par rapport
aux tests fondés sur l'inégalité de Bonferroni et, dans certains cas, dépasse la puissance
des tests de MC fondés sur la vraisemblance. Nous appliquons les tests sur des données

utilisées par Fischer (1993) pour analyser des modeles de croissance.

Mots clés : régressions empilées, systeme SURE, test d'indépendance, régression
linéaire multivariée, corrélation contemporaine, test exact, test a distance
finie, test de Monte Carlo, bootstrap, test induit, test LM, quotient de

vraisemblance, test de spécification, macroéconomie, croissance



ABSTRACT

This paper proposes finite-sample procedures for testing the SURE specification in
multi-equation regression models, i.e. whether the disturbances in different equations are
contemporaneously uncorrelated or not. We apply the technique of Monte Carlo (MC)
tests [Dwass (1957), Barnard (1963)] to obtain exact tests based on standard LR and LM
zero correlation tests. We also suggest a MC quasi-LR (QLR) test based on feasible
generalized least squares (FGLS). We show that the latter statistics are pivotal under the
null, which provides the justification for applying MC tests. Furthermore, we extend the
exact independence test proposed by Harvey and Phillips (1982) to the multi-equation
framework. Specifically, we introduce several induced tests based on a set of
simultaneous Harvey/Phillips-type tests and suggest a simulation-based solution to the
associated combination problem. The properties of the proposed tests are studied in a
Monte Carlo experiment which shows that standard asymptotic tests exhibit important size
distortions, while MC tests achieve complete size control and display good power.
Moreover, MC-QLR tests performed best in terms of power, a result of interest from the
point of view of simulation-based tests. The power of the MC induced tests improves
appreciably in comparison to standard Bonferroni tests and, in certain cases, outperforms
the likelihood-based MC tests. The tests are applied to data used by Fischer (1993) to

analyze the macroeconomic determinants of growth.

Keywords : seemingly unrelated regressions, SURE system, multivariate linear
regression, contemporaneous correlation, exact test, finite-sample test,
Monte Carlo test, bootstrap, induced test, LM test, likelihood ratio test,

specification test, macroeconomics, growth



Contents

List of Definitions, Propositions and Theorems
List of Tables

1. Introduction

2. Framework

3. Test statistics for cross-equation disturbance correlation
3.1. Likelihood-basedtests . .. ... ... ... ... ... ... ...,
3.2. Induced Harvey-Phillips tests

4. Finite-sample theory
5.  Simulation experiments
6. Application to growth equations

7. Conclusion

References

v

15

18

24

25



List of Definitions, Propositions and Theorems

4.1 Proposition : Standardized representationiof/ and Harvey-Phillips statistics. 10
4.2 Proposition : Standardized representation of th& statistic. . . . . . . . . .. 10
4.3 Proposition : Standardized representation of QLR statistics. . . . . . . . .. 11
4.4 Proposition : Pivotal property of tests for cross-equation correlation . . . . . 14
List of Tables
1 Covariance matrices used in the Monte Carlo experiments. . . . . . . . .. 16
2 Empirical sizes of LM and quasi-LR independencetests . . . . . . ... .. 17
3 Empirical rejections of various independencetests . . . . ... .. ... .. 17
4 GDP growth SURE systems: independencetests. . . . . . ... ... ... 20
5 Capital growth SURE systems: independencetests. . . . . ... ... ... 21
6 Productivity growth SURE systems: independencetests . . . . .. ... .. 22
7 Labor force growth SURE systems: independencetests . . . . .. ... .. 23



1. Introduction

Multi-equation models which use both cross-section and time series data are common in econo-
metric studies. These include, in particular, the seemingly unrelated regressions (SURE) model
introduced by Zellner (1962). The SURE specification is expressed as a set of linear regressions
where the disturbances in the different equations are correlated. The non-diagonality of the error
covariance matrix usually entails that individual equation estimates are sub-optimal; hence, gener-
alized least squares (GLS) estimation which exploits the correlations across equations may improve
inference. However, the implementation of GLS requires estimating the error covariance from the
data. Further the cross-equation dependence must be taken into account when testing cross-equation
parameter restrictions. As it is well known, the feasible generalized least squares (FGLS) estima-
tors need not be more efficient than ordinary least squares (OLS); see Srivastava and Giles (1987,
Chapter 2). Indeed, the closer the error covariance comes to being spherical, the more likely it is
that OLS estimates will be superior. This has extensively been discussed in the SURE literature;
see, for example, Zellner (1962, 1963), Mehta and Swamy (1976), Kmenta and Gilbert (1968), Re-
vankar (1974, 1976), Kunitomo (1977), Kariya (1981a), and Srivastava and Dwivedi (1979). In this
sense, choosing between GLS and OLS estimation in the SURE model corresponds to the problem
of testing for sphericity of the error covariance matrix.

This paper studies and proposes finite-sample tests for independence against contemporaneous
correlation of disturbances in a SURE model. Independence tests in multivariate models have been
discussed in both the econometric and statistical literatures. In particular, Breusch and Pagan (1980)
derived a Lagrange multiplier (LM) test for the diagonality of the error covariance matrix. Kariya
(1981c) derived locally best invariant tests in a two-equation framework. Shiba and Tsurumi (1988)
proposed Wald, likelihood ratio (LR), LM and Bayesian tests for the hypothesis that the error co-
variance is block-diagonal. Related results are also available in Kariya (1981b), Kariya, Fujikoshi,
and Krishnaiah (1984) and Cameron and Trivedi (1993). Except for one special case, these test
procedures are only justified by asymptotic arguments. The exception is Harvey and Phillips (1982,
Section 3) who proposed exact independence tests between the errors of an equation and those of
the other equations of the system. These tests (which we will denote EFT) involve convehtional
statistics for testing whether the (estimated) residuals added to each equation have zero coefficients.
EFT tests may be applied in the context of general diagonality tests; for example, one may assess in
turn whether the disturbances in each equation are independent of the disturbances in all other equa-
tions. Such a sequence of tests however raises the problem of taking into account the dependence
between multiple tests, a problem not solved by Harvey and Phillips (1982).

A major problem in the SURE context comes from the fact that relevant null distributions are
either difficult to derive or too complicated for practical use. This is true even in the case of identi-
cal regressor matrices. Hence the applicable procedures rely heavily on asymptotic approximations
whose accuracy can be quite poor. This is evident from the Monte Carlo results reported in Har-
vey and Phillips (1982) and Shiba and Tsurumi (1988), among others. In any case, it is widely
acknowledged by now that standard multivariate LR-based asymptotic tests are unreliable in finite
samples, in the sense that test sizes deviate from the nominal significance levels; see Dufour and
Khalaf (1998) for related simulation evidence.



In this paper, we reemphasize this fact and propose to use the technique of Monte Carlo (MC)
tests [Dwass (1957), Barnard (1963)] in order to obtain provably exact procedures. We apply the
MC test technique to: (i) the standard likelihood ratio (LR) and Lagrange multiplier (LM) criteria,
and (ii) OLS and FGLS-based quasi-LR (QLR) statistics. We also introduce several induced tests
based on a set of simultaneous Harvey/Phillips-type tests and suggest a simulation-based solution to
the associated combination problem. The critical regions of conventional induced tests are usually
computed using probability inequalities.g.,the well know Boole-Bonferroni inequality) which
yields conservative p-values whenever non independent tests are combined [see, for example, Savin
(1984), Folks (1984), Dufour (1990) and Dufour and &sr(1998)]. Here, we propose to construct
the induced tests such that size-correct p-values can be readily obtained by simulation.

The first step towards an exact test procedure involves deriving nuisance-parameter-free null
distributions. In the context of standard independence tests, invariance results are known given two
univariate or multivariate regression equations [Kariya (1981c), Kariya (1981b), Kariya, Fujikoshi,
and Krishnaiah (1984)]. The problem of nuisance parameters is yet unresolved in models involving
more than two regression equations. Here, we show that the LR, LM and QLR independence test
statistics are pivotal under the null, for multi-equation SURE systems. Though the proof of this
resultis not complex, it does not appear to be known in the literature. Of course, existing work in this
area has typically focused on deriving p-values analytically. By contrast, the approach taken in this
article does not require extracting exact distributions; the technique of MC tests allows one to obtain
provably exact randomized tests in finite samples using very small numbers of MC replications of
the original test statistic under the null hypothesis. In the present context, this technique can easily
be applied whenever the distribution of the errors is continuous and specified up to an unknown
covariance matrix (or linear transformation). Note this distribution does not have to be Gaussian.
For further references regarding MC tests, see Dufour (1995), Dufour and Kiviet (1996, 1998),
Kiviet and Dufour (1997), Dufour, Farhat, Gardiol, and Khalaf (1998), and Dufour and Khalaf
(2000). We investigate the size and power of suggested tests in a Monte Carlo study. The results
show that, while the asymptotic LR and LM tests seriously overreject, the MC versions of these tests
achieve perfect size control and have good power. The power of the MC induced tests improves
appreciably in comparison to the standard Bonferroni tests and in several cases outperform the
corresponding MC-LR and LM tests.

The outline of this study is as follows. In Section 2, we present the model and the estimators
used, while the test statistics are described in Section 3. In Section 4, we show that the proposed
test statistics have nuisance-parameter free distributions under the null hypothesis and describe how
exact MC tests can be implemented. In Section 5, we report the simulation results. In Section 6,
we apply the tests to data used by Fischer (1993) to analyze the macroeconomic determinants of
growth. We conclude in Section 7.

2. Framework
Consider the seemingly unrelated regression model



whereY; is a vector ofn observations on a dependent variablg, a full-column rankn x k;

matrix of regressorsj; a vector ofk; unknown coefficients, and; = (u;1, wso, ... , ui) an x 1

vector of random disturbances. Whén = X, i, j = 1, ... , p, we have anultivariate linear
regression(MLR) model; see Anderson (1984, chapters 8 and 13), Berndt and Savin (1977), and
Kariya (1985). The system (2.1) may be rewritten in the stacked form

y=XB+u (2.2)
where
Y1 Xy 0 -+ 0 U1 B4
o Bl T IR PR el BT il IR
Y, 00 - X, 4y 5,

so thatX is a(np) x k matrix, y andu each have dimensiomp) x 1 andg has dimensior x 1,
with k = 77 k;. Set

Uy
U= [ Ul U9 Up ] = Ué (2.4)
u,
whereUy. = (ug, uo, - .. , ugp) is the disturbance vector for theth observation. In the sequel,

we shall also use, when requested, some or all of the following assumptions and notations:
Ut.:JWt, t:1,...,7’L, (25)

where/J is a fixed lower triangulap x p matrix such that

»=JJ = [aij]iyjzlwqp is nonsingular, (2.6)
where we setr; = 0_111/2’ i=1,...,p;
Wi, ..., W, arep x 1 random vectors 2.7)
whose joint distribution is completely specified,; '
u is independent oX . (2.8)

Assumption (2.8) is a strict exogeneity assumption, which clearly holds wheriixed. The as-
sumptions (2.5) - (2.7) mean that the disturbance distribution is completely specified up an unknown
linear transformation that can modify the scaling and dependence properties of the disturbances in
different equations. Note (2.5) - (2.7) do not necessarily entailXhistthe covariance matrix of



U;. . However, if we make the additional assumption that

Wh, ..., W, are uncorrelated with
EW) =0, EWW)=I,, t=1,...,n, (2.9)
or, more restrictively,
Wi, ..., Wn "% N0, 1] (2.10)
we have:
E(U.)=0, E(U.U.)=%, t=1,...,n, (2.11)
E(u) =0, E(uu)) =ol,, i,j=1,...,p, (2.12)
and
Eud)=¥®1I,. (2.13)

The coefficients of the regression equations can be estimated by several methods among which
the most well known are: (i) ordinary least squares (OLS) applied to each equation, (ii) two-step fea-
sible generalized least squares (FGLS), (iii) iterative FGLS (IFGLS), and (iv) maximum likelihood
(ML) assumingu follows a multinormal distribution. The OLS estimator@fs

~ Al A/ A _ .
Bors = (B1, -y By Bi=(X[X)T'X]Y;, i=1,...,p. (2.14)
An associated estimate for ¥ can be obtained from the OLS residuals:
Ui =Y — XiB; = M(X)u; , M(X;) =1, — X(X!X)7'X!, i=1,...,p. (2.15)
The two-step FGLS estimate based on any consistent estBraft&, is given by
= 1ra—1 -1 vr/ia—1
Brars = [X'(ST' @ L)X]  X'(S™' @ L)y. (2.16)

If the disturbances are normally distributed, we have the log-likelihood function

Ly xpY(= e L)y - X5) . (2.17)

£=-"Lir) - %1n(|2|) =

2

The corresponding maximum likelihood (ML) estimatgrandy. of 5 andX. satisfy the following
normal equations:

XEleL)Xg=X'C"'eL)y, %= (2.18)



whered = (3, , ..., B;)’ and

1/2

U=, ... ), @ =Y;— Xif;, 7oy = iy /[(1hyi0;) (it ity )] (2.19)

Of course, the estimators in (2.18) are well defined provided the n#thias full column rank, an
assumption we shall make in the sequel.

lterative procedures are typically applied to obtain the ML estimates. Supp®sis an initial
estimate ob.. Using (2.18), we can solve for a first GLS estimatespf

B9 = [x'(E0 1,)X] X (EO 0 1)y, (2.20)
from which a new estimate af may be obtained:
W —y— x3? (2.21)

This residual leads to further estimatazs') and[i(l) of ¥ andg. Pursuing this iterative process,
we see that the estimators at thé¢h iteration take the form:

" = XEW e L) X]TX(EW 0 1)y, (2.22)
- 1~ ~
w — Lamygm Z e
) = nU AR [rij ]Z.J:lmp, (2.23)
h=1,2,...,where
o® =@, . a®], a® =y - xB0Y R = @ (2.24)

Under standard assumptions, iterating this procedure to convergence yields the ML estimates [see
Oberhofer and Kmenta (1974)]. For a more general discussion of the properties of such partially
iterated estimators, the reader may consult Robinson (1988).

3. Test statistics for cross-equation disturbance correlation

3.1. Likelihood-based tests
Given the setup described above, we consider the problem of testing the hypdihebet X is

diagonal. For any vectdd; , ..., dy)’, let us denoteD y (d;) the diagonal matrix whose diagonal
elementsard; , ..., dy :

DN(dz) = diag(ch g eee g dN) . (31)
Dy (d;) represents a diagonal matrix of dimensinwith d = (d; , ..., dy)’ along the diagonal.

ThenHy may be expressed as

Hy: % = Dy(o?) . (3.2)



SinceJ is lower triangular, it is easy to see that: = D,(c?) if and only J = D,(co;). Thus,
underHy, uy; = oWy, i =1, ..., p, whereW, = (Wi, Way, ..., W)’ If (2.9) holds, Hy
is equivalent to the absence of contemporaneous correlation between the compobent#f tfie
components ofV; are independent] is equivalent to the independence between the components
of u;; whenWy, ... , W, are independent, the latter condition entails that the disturbance vectors
u1, ..., up are independent.

In the sequel, we will frequently refer to the standardized disturbances

w=(w), ... ,10%)', wherew; = (1/o;)u;, i=1, ..., p. (3.3)

Under the assumptions (2.5) - (2.7), the veetdras a completely specified distributiorHf, holds.

Let us now consider the case where, in addition to (2.5) - (2.7), we make the normality assump-
tion (2.10). Then the disturbance vectéfs = JW; , ¢t =1, ..., n, arei.i.d. N[0, X] where
¥, = JJ' and we have the log-likelihood function (2.17). In this case, the LR and LM statistics for

testingH, take relatively simple forms. The LR statisticéisp = n In(A) where
A= Dp(ED)/ 2] (3.4)

while the LM criterion is

p i—1
Eovr=nY D> 1 (3.5)

i=2 j=1
wherer;; = ﬁ;aj/[(a;ai)(ﬂ;aj)}m. Under standard regularity conditions, bath, and¢; ,, fol-
low ax?(p(p — 1)/2) distribution asymptotically undefl, [see Breusch and Pagan (1980)].

In the sequel, we shall also consider quasi-LR statigfits = n In(A(")) whereS(" is used
instead of the unrestricted ML estimafor:

AM =D, (67)|/1£7] . (3.6)

Since unrestricted ML estimators of the SURE model parameters are usually obtained through it-
erative numerical methods, such QLR statistics are easier to compute than the fully-iterated LR
statistic.

3.2. Induced Harvey-Phillips tests

A finite-sample exact independence test was developed by Harvey and Phillips (1980). Their pro-
cedure is applicable under the assumptions (2.5) - (2.10) to test a null hypothesis of the form

2
vw_ |01 0
Hy : Y = { 0 n, } (3.7)



whereX;;isa(p — 1) x (p — 1) matrix. Specifically, they propose the following statistic:

AV (VM) W/ (p— 1)

EFT = e e ,
a1 = Vi(VIMVA) ™ Vi /(n— ky —p + 1)

(3.8)

which follows anF' distribution with(p — 1, n — k1 — p + 1) degrees of freedom undéfy;. The
EFT statistic can be obtained as the usliatatistic for testing whether the coefficients Ypare
zero in the regression af; on X andVj.

More generally, we can consider any particular disturbance vegt(r equation) from the
regressions in (2.1) and test in this way whethgis independent OVK(” = [uj}jeK(i) , where
K ;) is some non-empty subset §f : 1 < j < p, j # i}. This can be done by estimating an
extended regression of the form

Y= XiB+ D vy + s (3.9)
VSO

and testing the hypothesiy[K ;)] : v; = 0 for j € K. Under the null hypothesi#l, of
independence [see (3.2)], the correspondihstatistic

B (wjw; — SS(K))) /i
BIEOI = 55® o)/t =k — 59 (3.10)

follows an F'(p; , n — k; — p;), wherep; is the number of elements iR ;) and SS(K(;) is the
unrestricted residual sum of squares from regression (3.9).

As things stand, the latter procedures only test the independence of one disturbance vector
with respect to the other disturbance vectors. It is straightforward to see that the igsbaked
on F;[K;] can only detect correlations betweenand the other disturbances. In order to test
H, against all possible covariance matriéeswe need a different procedure. A simple way to do
this, which still exploits the Harvey-Phillips procedure, consists in using induced tests that combine
several tests of the for;[K;)]. Here we shall consider two methods for combining tests.

Denote Gr[z|v1, v2] the survival function of the Fisher distribution witlv;,v2) degrees
of freedom;i.e, if F is a random variable that follows af'(v,v2) distribution, we have
Grlx|v1,v2] = P[F > z|. We consider the test statistics

EFT;, = Fj[K;] , whereK; ={j:1<j<n,j#i},i=1,...,p, (3.11)

each of which tests whethes; is independent of all the other disturbance vectors. The p-value
associated witl F'T; is:

pvi[Ki]:GF[EFﬂ]p—l,n—ki—p—Fl] (312)

which follows a uniform distribution on the intervé, 1]. The levela. F-test based o F'T; is
equivalent (with probability 1) to rejecting the null hypothesis wher K;] < «, or equivalently



whenl — py;[K;] > 1 — «.
A difficulty we meet here consists in controlling the overall level of a procedure based on several
separate tests. A simple way to do this consists in running each one pftésésF;[K;| at level

p
a;, SO that) " «; = «,and rejectingl, when at least one of the separate tests rejects the null

i=1
hypothesis; for example, we may take= «/p,i = 1, ... , p. By the Boole-Bonferroni inequality,
this ensures that the probability of rejectiffg is not greater than (although it could be smaller).
Whena; = a/p, this procedure is equivalent to rejectiffy whenpumi, < a/p, where

PUmin = min{py;[K;]:i=1, ..., p} (3.13)

is the minimum of the p-values.

Note that using the minimum of several p-values as a test statistic was originally proposed by
Tippett (1931) and Wilkinson (1951), in the case of independent test statistics. The independence
condition does not however hold here for thBd'T; statistics, hence the necessity of taking into
account the dependence. Because it is conservative, the Boole-Bonferroni bound may lead to a
power loss with respect to a procedure that avoids the use of a bound. In the next section, we will
see that the conservative property of the Bonferroni-bagggl, procedure can be corrected by
using the technique of Monte Carlo tests. In other words, we consider the procedure that rejects
Hy whenpunyi,, as defined by (3.12) and (3.13), is small, and we shall show that its size can be
controlled by using the Monte Carlo test technique.

A second fairly natural way of “aggregating” separate tests consists in rejdétinghen the
product

p
pox =[] puilKi) (3.14)

=1

is small. Such a procedure was originally suggested by Fisher (1932) and Pearson (1933), again for
independent test statistics. As for thg,,;, procedure, we will see that the size of such a test based
onpuvy can be controlled by Monte Carlo techniques, even if the individual p-valuég’;| are not
independent.

For convenience reasons, we shall implement both these tests by taking the test criteria:

Fmin =1~ PUmin , (315)

Fy=1-— pvy, (3.16)

each one of which rejecid, when it is large.
We also considered a “sequential” approach in which we test the sequence of hypotheses

Hy; : u; is independent ofi; 1, ... ,u, (3.17)



fori =1, ..., p — 1,using Harvey-Phillips tests based on regressions of the form

p
Yi=XiB+ > Ty + i (3.18)
j=i+1
i=1,...,p—1.Clearly Hy is equivalent to the conjunction of the— 1 hypothesediy; ,i =
1, ..., p— 1, so that we should rejedtly when at least one of these tests is significant. This
yields thep — 1 test statisticd;[{i + 1, ... , p}],i =1, ..., p — 1 for which it is easy to see that
Fl{i+1,...,p}] ~ F(p—1i,n — k; — p+ 1) underHy. The problem then consists again in

controlling the overall level of this combined procedure. Since it is not clear the test statistics are
independent, one way to achieve this control consists in using again the Boole-Bonferroni inequality.

p
For this, we test), at levela;, where) " «; = «, and rejectd, when one of the tests is significant.
i=1
In a sequential context, a standard way of doing this consists in considering geometrically declining
levels, such as

a1 =af2, as=a/(2%), .., apa=a/(2P"%), ap_1 = a/(2P7?); (3.19)

see Anderson (1971, Chapter 4) and Lehmann (1957). Here we shall consider the bound proce-
dure based on (3.19), as well as tests on the minimum and the productpt#parate p-values

associated with the test statistieg{i + 1, ... , p}] :
FSpin=1—min{pv;[{i+1,...,p}:i=1,...,p—1}, (3.20)
p—1
FSx=1— [[pul{i+1,....p}]. (3.21)

i=1

Again the levels of the two latter procedures will be controlled through the Monte Carlo test tech-
nique.

For further discussion of multiple test procedures, the reader may consult Miller (1981), Folks
(1984), Savin (1984), Dufour (1989, 1990), Westfall and Young (1993), @murk and Monfort
(1995, Chapter 19), and Dufour and Tesr(1998, 1999).

4. Finite-sample theory

We proceed next to examine the finite-sample distributions of the above defined LM, LR and QLR
test criteria. In particular, we show that the associated null distributions are free of nuisance param-
eters. To do this, we will first demonstrate in the three following propositions that all the statistics
considered are functions of the standardized disturbanges = 1, ..., p. Interestingly, these
properties hold under very weak distributional assumptions and X



Proposition 4.1 STANDARDIZED REPRESENTATION OFLM AND HARVEY-PHILLIPS STATIS-
Tics. Under the assumptions and notatig2sl) to (2.6), the LM statistic defined ir§3.5) can be
written in the form

p i—1

Epp=n) Y T (4.2)

i=2 j=1

wherer; = @;w;/[(@,@;)(@@;)]"”, @; = Ui/o; = M(X;)w; andw; = (1/0;)u; , while each
statisticF;[ K ;)] defined in(3.10) is identical to theF-statisticF';[ K ;)] for testingH; : v;; = Ofor
J € K(; in the regression

Y= XiB 4 Y @5+ wi (4.2)
]'GK(”

whereY;* = (1/0;)y;.

PROOF. The result for the.. M statistic follows on observing that

For F;[K;)], we note that
ayi; = wiM(Xi)u; = o?wi M (X;)w; = ot , SS[K()] = 07SS;

where@;@; and SS; are the restricted and unrestricted residual sum of squares from the linear
regression

V' = X6+ Y @yl i
j€K<i)
We then see that
(@iu; — SSIKw))) /Py (oFdji; — 025S7) /P,
SSIKpl/(n—ki—D;) 0255 /(n— ki — ;)
SSf/(n— ki —p;)

FilKy| =

Proposition 4.2 STANDARDIZED REPRESENTATION OF~THELR STATISTIC. Under the assump-
tions and notations of Propositich1, suppose the matrix defined in(2.18) has full column rank.

10



Then the LR-based statisticdefined in(3.4) can be written in the form

A=5L (4.3)
P

whereX, is the ML estimator of obtained by maximizing the Gaussian log-likelihood

1
L. = In(2m) = SI(Z) - S(w— XB) (£ @ L) (w - X5) (4.4)
wherew = (w}, wy, ... , w,)".
PROOF. From(3.4) we can write
12[ A2/ 2
- A - 0i/05
A — 1Dy (o, 1)‘ ’DP(F?)‘ [ Dy(0; 1)| _ i=1 (4.5)
|Dp(0i_1)| 12| |Dp(07;_1)‘ ‘DP(UZI)ZDP(U;IM
wheres? /o? = @,w; = w;M(X;)w;. Further, it is easy to see that the Gaussian log-likelihood
(2.17) is invariant under data transformations of the faym= vec| Y1, Ya. --- Y. | with
Yie =ci(Yi+Xi6:),i=1,...,p, (4.6)
wherec; is an arbitrary non-zero constant afydan arbitraryk; x 1 vector(i =1, ..., p). In other

words, if the log-likelihood function of is given by(2.17), the likelihood ofy. has the same form
with 3, replaced by3;, = ¢;(5; + 0;) andX replaced byx, = D,(c;)¥Dp(c;). In particular, if

we taked; = —f; and¢; = 1/0;, we getY;, = (1/0;)u; = w; with L, as the corresponding
log-likelihood function. Consequently, by the equivariance of maximum likelihood estimators [see
Dagenais and Dufour (1991)], we hade = D, (o; })£D,(c; '), from which (4.3) follows.x

Proposition 4.3 STANDARDIZED REPRESENTATION OFQLR STATISTICS Under the assump-
tions and notations of Propositiof.1, let ©(%) be an initial positive definite estimator &f, and
suppose the matrices(®), h = 1, ..., H, defined in(2.23) have full column rank. Then, the
approximateL R statisticsA(#) defined by(3.6) can be written in the form

p !
AH) =t
AV = \iﬁH)| 4.7)
whereiﬁH) is the estimate of obtained through the formulas:
AW — xSV e 1) X] ' xEW @ 1) w | (4.8)

11



S = Dy(o;)BOD, (071 forh =0,

_ g fornz 1,
h=0,1,..., H whereU™, h> 1, obeys the recursion

PrROOF. From the definition(3.6), we can write, forh > 0,

p
_ ~ _ N w;M(Xz)wl
iy _ 1D ID, D, _ Dot _ b

1Dy (07 )| |S®)] | Dy(o; )] £SO T g
where
S = Dy(o7HEM D, (07).

Forh = 0, the result holds trivially. Foh > 1, we have:

s Lpmyge _ e
E* - EU* U* [ Ui /n]z] 1,....,p°
~ o _ h ~ _ h ~(h
o = U“”Dp( Y =[a “, N S U N G
i = /oa® = /o) — X3V, i=1, .., p.
Putting (4.15) in vector form, we see that
a = Uec[ﬂgz) s s u(h)] (D ® I,)a™ :ﬁn(y—XB(h_l))

whereD = D,(o;)andD, =D ® I,,.
Now, for h > 0, the feasible GLS estimatqﬁ(h) minimizes the quadratic form

S(B) =(y—Xp)(EW o 1,) (y - X8)

with respect tg3. Since

SB) = W—XB(DeL)D ' '@L)EWeL) (D' e L)(DaL)(y-

= [(D®L)(y—XB)'[(DEWD) @ L,]) (D @ L)(y — XB)],
this entails that

-1

5" = [(D.x) (EW © 1,) 7 (DuX)] T (DaX) (P © 1) ' Duy.
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Further, on noting that

w = (wh, wh, ..., w,) = (D& I)u= Dyu
and
o' X1 0 e 0
— 1 0 0y X 0 1
DnX = [Dy(o;Y) @ I, )X = = XDy(o; },) = XA
0 0 S1X,
whereA = D,(o; I},) is a non-singular matrix, we see that
Y = [(xa) (B e n) " (xa)]) 7 (xa) (S @ 1) Day
= g+ A X' EW o) ' X X (EY @ 1,) ' Dau
= p+atpl
where
AW = (XY e 1) X] ' xX'EW & L) lw.
Forh > 1, we then see that:
Do = Du(y—x3""Y) =D, (X8 +u—-x8-xa73"")
o Xﬁih 1)
hence
a® = (1ona =w - x:30V i=1, . p.

This completes the proof of the propositian.

Propositiongt.1and4.2show that the distributions of the LM, Harvey-Phillips and LR statistics
only depend on the distributions &f andw, irrespective whether the null hypothegig holds or
not. This property also carries to procedures based on combining several of these test statistics,
such as the induced Harvey-Phillips tests proposed in Section 3.2. In particular, under the strict
exogeneity assumption (2.8), this means that the conditional distributions (iyef these test
statistics only depend on the distribution-of(and the known value oX). If we further assume
that the joint distribution of1/1, ... , W, is completely specified [assumption (2.7)], then unbgr
the distribution ofw does not involve any unknown parameter, and similarly for the LM, Harvey-
Phillips and LR statistics. For the QLR statistics, the same properties will hold provided we assume

13



that>\?) = Dy (o7 )EO D, (o7 ") can be rewritten as a function af andw. In particular, this will
be the case if the initial valug(®) is obtained from the least squares residuals frompteeparate
regressions in (2.1).e. if

N 1~ ~

SO = 20U, U=T[a, ..., 0, 6=MX)Y,i=1,...,p. (4.17)

n

We can thus state the following proposition.

Proposition 4.4 PIVOTAL PROPERTY OF TESTS FOR CROSEQUATION CORRELATION Under

the assumptions and notatiofs1) to (2.8), the LM statistic, the LR-based statisticand all the
statistics of the fornf;[K ;) ], where K ;) is some(non-empty subset of j : 1 < j < p, j # i},
follow a joint distribution (conditional onX) that does not depend on any unknown parameter
under the null hypothesiHy : ¥ = D,(c?) . If furthermore

Dp(o; SO Dy (0 1) = H(X, w) (4.18)

where H (X, w) is a known function o and w, the same property holds for the QLR statistics
AM h>0.

It is of interest to note here that the pivotal property for the LR statistic®uld also be ob-
tained by using the invariance results for generalized regressions models given by Breusch (1980).
However this would not simplify our proof and would not yield the explicit representation provided
by Propositiond.2. As we will see below, the latter can be useful for implementing MC tests.

The fact that the LM, Harvey-Phillips, LR and QLR statistics have nuisance-parameter-free
null distributions entails that MC tests can be applied here to obtain a finite-sample version of the
corresponding tests. Such tests can be implemented as follows. Consider a test Btédistif;
with a continuous nuisance-parameter-free null distribution, supfgserejected whed is large
li.e, whenT > c(a), whereP[T > c(a)] = o underHy|, and denote by+(z) = P[T > z] its
survival function under the null hypothesis. LBt be the test statistic computed from the observed
data. Then the associated critical region of sizenay be expressed &s(7y) < a. By Monte
Carlo methods, generafé independent realization, , ... , T of T underH,. Now compute
the randomized “p-valuepy (1) , where

(4.19)

. 1 Y 1, ifzeA
Gvle) =5 ;I[O’“’)m “o @ =) e a
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Then we can show that

I[a(N +1)]

Plpn(To) < a] = NT1

(4.20)
see Dufour and Kiviet (1998). In particular, if we chod$eso thata (N + 1) is an integeré€.g, for
a = 0.05, we can takeV = 19, 39, 99, etc.), we have:

Ppn(Tp) <ol =a. (4.21)

In other words, the randomized critical regipg (7y) < « has the same level as the critical region
G(Ty) < «. This procedure is of course valid when the error vectéysare i.i.d. normal [As-
sumption (2.10)], but also under parametric distributional assumptions Wisstiie only unknown
parameter in the distribution éf;. ,t =1, ..., n.

MC tests can be interpreted as parametric bootstrap methods applied to statistics whose null dis-
tribution does not depend on nuisance parameters, with however the central additional observation
that the randomization allows one to exactly control the size of the test for a given (possibly small)
number of MC simulations. For further discussion of Monte Carlo tests (including its relation with
the bootstrap), see Dufour (1995), Dufour and Kiviet (1996), Kiviet and Dufour (1997), Dufour,
Farhat, Gardiol, and Khalaf (1998), and Dufour and Khalaf (2000). On the bootstrap, the reader
may consult Hall (1992), Efron and Tibshirani (1993), Jeong and Maddala (1993), Vinod (1993),
Shao and Tu (1995), and Horowitz (1997).

5. Simulation experiments

In order to assess the performance of the various procedures discussed above, we conducted a set of
Monte Carlo experiments for a five-equation mogek 5) with n = 25 observations. To assess test
size, we also considered= 50, 100. In each experiment, the design matricés, i =1, ... , p,
include a constant term and equal numbers of regregéors- k£, i = 1, ... , p). The values
of k considered aré& = 5, 6, ... , 15. The variables in each matriX; were generated using
a multivariate normal distribution and kept constant over all replications. The disturbances were
generated from multivariate normal distributions. Several choices for the error covariance were
considered and are listed in Table 1. Thematrix as well as the regression coefficients used were
taken from the empirical example discussed in SectidnThe other matrices were obtained by
dividing certain elements of the Cholesky decompositioR pby appropriate constants to decrease
the covariance terms. Of course, the parameters under the null were obtained by setting the non-
diagonal elements adf; to zero. The numbers of trials for the MC tests were set to 19 and 99
(N =19,99). The number of overall replications was 1000. All experiments were performed with
Gauss 386iVM (version 3.2.13). The results are presented in Tables 2 and 3.

Our main findings can be summarized as follows.

1. The asymptotic tests (Asy.) consistently overreject. Indeed, we can see that the empirical

1The statistics studied are all invariant to the values of the regression coefficients.
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Table 1. Covariance matrices used in the Monte Carlo experiments

.0007773 6.616e-06 -1.082e-05 .0003573  -.0001443
.0024550 .0001923 -.0010390 -.0006195
31 | .0002950 1.747e-05 .0002829
.0007560 .0004105
.0006790
.0007773 1.654e-06 -1.353e-06 3.969e-05 -1.804e-05
.0024550 2.405e-05 -.0001737 -7.732e-05
Y9 | .0002800 2.427e-05 5.417e-05
.0001276 2.495e-05
4.863e-05
.0007773 3.308e-06 -3.607e-06 8.931e-05 -3.608e-05
.0024550 9.618e-05 -.0003471 -.0001238
Y3 | .0002836 3.804e-05 .0001051
.0001800 7.966e-05
.0001029
.0007773 8.271e-07 -1.803e-06 .0001786  -2.062e-05
.0024550 2.138e-05 -.0002083 -.0002061
>, | .0002800 1.513e-05 3.485e-05
.0001707 2.421e-05
5.630e-05

sizes can be substantially larger than the nominal 5%. This is in accordance with well doc-
umented results on LR-based multivariate tests. On the other hand, our conclusions with
respect to the LM test are not in agreement with the available Monte Carlo evidence, in which
LM independence test was found to work well. This was due to the fact small numbers of

equations were studied in the earlier literature. Here we find that it does not always work well

in larger systems. In contrast, the MC versions of the tests achieve perfect size control.

. The size corrected tests perform quite well. The power of all four MC tests are comparable
to each other, although the LR-type tests exhibit better power. The EFT test shows relatively
lower power, as would be expected.

. Iterating SURE estimators to convergence is clearly not worthwhile, in the sense of improving
the power of the associated LR test. In fact, in some cases, iterations resulted in slight power
losses. Furthermore, our results give very favorable support to the OLS-based QLR test. This
issue is particularly pertinent in the context of simulation-based tests.

. The MC induced tests based on the Harvey-Phillips statistics perform very well overall the
parameter values considered. As expected, the Tippet/Wilkinson-type MC induced tests per-
form better than their Bonferroni counterparts. The power of the Fisher/Pearson-type induced
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Table 2. Empirical sizes of LM and quasi-LR independence tests

p=> n =25 n = 50 n = 100
k QLRors LM QLRors LM QLRors LM
Asy. MC Asy. MC | Asy. MC Asy. MC|Asy. MC Asy. MC
5 193 .040 .105 .045.115 .057 .081 .057.070 .040 .062 .037
6 198 .046 .122 .052 .115 .055 .082 .050.071 .046 .054 .036
7 307 .050 .172 .057 .137 .061 .108 .057.069 .050 .054 .037
8 322 .048 .200 .054 .150 .057 .106 .050.080 .048 .069 .045
9 413 .049 .263 .052.158 .048 .107 .046 .087 .049 .073 .038
10 | 478 .055 .336 .058.184 .050 .139 .052.091 .055 .071 .040
11 | 536 .038 .353 .049.190 .054 .146 .056.092 .038 .076 .036
12 | .601 .040 .432 .04%.210 .048 .150 .049.096 .040 .079 .041
13 | .650 .057 .505 .043.230 .047 .179 .040.109 .057 .088 .037
14 | .725 .059 .577 .051.236 .042 .185 .048 .115 .059 .095 .036
15 | .816 .052 .684 .064 .271 .045 .213 .05%.120 .052 .109 .047
Table 3. Empirical rejections of various independence tests
n =25 20 (H()) 21 ZQ 23 24
Asy. MC MC MC MC MC
MC replications| - 19 | 19 99| 19 99 19 99 19 99
LM 105 .045| .998 1.0 .911 .954|.704 .794| .444 .500
QLRorLs 193 .040, 1.0 1.0 .947 971|.744 .820| .438 .494
QLRaLs 260 .040| 1.0 1.0].959 .979|.750 .825 | .429 .504
LR 267 .047) 1.0 1.0] .961 .980|.746 .824| .428 .494
Fhin - .043| 1.0 1.0] .925 .965|.632 .693|.360 .409
Fy - .052| 1.0 1.0|.944 .980|.714 .784|.382 .438
FSiin - .049| 1.0 1.0| .846 .912|.562 .653|.368 .399
FSy .052| 1.0 1.0 .963 .984 | .721 .799| .490 .562
Bonferroni Harvey-Phillips type tests
Fioin .034 1.0 .963 .665 .356
FShin .049 1.0 .896 .687 .316
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tests is generally higher than the power of the Tippet/Wilkinson-type ones. Further, the se-
guential variants of the induced tests perform better than the non-sequential ones. Indeed, in
two cases over three, the sequential Fisher/Pearson-type inducgfl $estexhibits the best

power among all the tests considered.

6. Application to growth equations

For illustrative purposes, we studied data previously analyzed by Fischer (1993) which contains
several series of macroeconomic aggregates observed yearly for a large panel of countries. The
dependent variables of interest are four growth indicators: GDP growth, capital accumulation, pro-
ductivity growth (measured by Solow residuals), and labor force growth. The following determi-
nants of growth are considered: the inflation rate, the ratio of budget surplus to GDP, the terms of
trade, and the black market premium on the exchange rate. Fischer focuses on explaining the de-
terminants of growth. The econometric specification consists of an unbalanced panel model, which
assumes contemporaneously uncorrelated disturbances. Here, we shall test the latter specification.
Attention is restricted to the multiple regressions (17), (23), (29) and (35) in Fischer (1993), which
include all four explanatory variables. The choice of countries was motivated by the availability of
observations on all included variables. We consider:

A) the South-American region (1973-1987): 1) Mexico, 2) Argentina, 3) Chile, 4) Colombia, 5)
Ecuador, and 6) Paraguay;

B) the African region (1977-88): 1) Ghana, 20 d’lvoire, 3) Kenya, 4) Malawi, 5) Morocco,
and 6) Zambia,

C) the Asian region (1978-87): 1) Korea, 2) Pakistan, 3) Thailand, 4) India, and 5) Indonesia.

Then, for each region, we considered four SURE different systems corresponding to each one
of the four growth indicators considered (where 1, ... . n,i=1, ..., p):

AGDPy; = 3§ + 85 INFLATy + 85 TRMTRDy; + 35 SRPLSy; + 85 EXC My + u ;

ACPTL;; = 5 + BE INFLAT;, + 85X TRMTRD;, + 35 SRPLSy; + 5 EXCM;; + uf

APRDCTy = 85 + 8L INFLAT,, + 85 TRMTRD;, + 8% SRPLS:, + 85 EXCM; + ul ;

ALABOR;; = 85 + gL INFLAT}, + 8%, TRMTRD;; + 5% SRPLS;; + % EXCM; + ul; .
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Here, for each country and each year, AGDP;;, ACPTL;;, APRDCT;;, ALABOR;;, and

EXC M, represent respectively GDP growth, capital accumulation, productivity growth, and labor
force growth. The explanatory variables are: inflatiétV F' LAT;; ), terms of tradé T RMT RD;;),

the ratio of budget surplus to GD®B RPLS;;), and the black market premium on the exchange
rate (EXCM;,). Overall, we consider 12 different SURE systems with either 6 equations (South
America, Africa) or 5 equations (Asia), each system corresponding to a region and one of the four
growth indicators. Countries are numbered inside each region as indicated in the list presented at
beginning of this section (this ordering correspond to the World Bank database that we used).

We will now test whether the disturbances inside each one of these SURE systems are con-
temporaneously correlated, using a Gaussian distributional assumption. The assumption that the
disturbances are not correlated across countries is important to justify pooling the data as done by
Fischer (1993). In each case, we applied LM, LR and QLR tests, as well as Harvey/Phillips-type
induced tests. The MC tests are based\orn= 999 replications of the statistics considered. The
QLR tests are based on two-step feasible GLS estimators, using OLS residuals to estimate the dis-
turbance covariance matrix. For completeness, we also report the individual Harvey-Phillips tests
(based on the statistid§ (K;) andF;[{i + 1, ..., p}] defined in Section 3.2) which are combined
by the MC induced tests. Note that in the case of the sequential tests, the ordering of the countries
may affect the outcome of the test; here, we present results based on the ordering given above. The
results are presented (as p-values) in Tables 4 to 7. The MC test results which are significant at the
10% level are highlighted with one star (*), while those which are significant at the 5% level are
highlighted with two stars (**). In view of the simulation evidence of Section 5, we shall stress
the conclusions provided by the MC LR-based @l tests. Asymptotic p-values (Asy.) are only
reported for comparison sake.

For GDP growth (Table 4), no test is significant (at the 10% level) in the case of the South-
American countries. For Africa, the MC LR-type tests are significant at the 10% level (but not 5%),
but the F'Sy,;, induced test is significant at the 5% level. On looking at the individual sequential
Harvey-Phillips tests, it appears this may be due to correlations between the disturbances in the
Malawi equation and those for Morocco and/or Zambia. Turning to the Asian region, while the LR-
based tests are not significant again, we nevertheless observe th&f;the" S, and F'Sy are
significant at the 10% level. In this case, the Harvey-Phillips sequential tests suggest that there may
be dependence between Korea and the other countries. For all regions, it is of interest to observe
that the asymptotic approximations and the MC procedure yield very different p-values for the LR-
based statistics, which may lead to quite different conclusions. This observation also applies to the
results for the other growth indicators discussed below.

For capital growth (Table 5), the MC LR an#lS,,;, tests are strongly significant for Asia
and close to being significant at the 5% level for South America. The same tests do not come
out significant at usual levels for Africa, although thé/, F.,;, and F\« also provide indications
of dependence in this case too. The Harvey-Phillips individual tests suggest there is dependence
between the disturbances in the equation for Chile and those for Colombia, Ecuador and Paraguay;
in Africa, the dependence appears to be between Thailand, India and Indonesia.

In the case of productivity growth (Table 6), we see no evidence of cross-equation correlation for
both South America and Asia, but some for Africa. In the latter case, the MC-LR statistic is strongly
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Table 4. GDP growth SURE systems: independence tests

South Americal Africa Asia
p==6 p==6 pP=5
F1(K) 7927 1613 .0215*
Fy(K>) 7906 2882 .6068
F3(K3) .2669 .1308 7127
Fy(Ky) .9901 .0516 5453
F5(Ks) .8503 9571 3771
Fe(Ks) .8253 2652 -
N2, ..., p}H) 7927 1613 .0215*
({3, ....p}) 7470 4964 3113
F5({4, ..., p}) .8810 9137 4277
Fy({5,...,p}) 8647 .0055* .3873
Fs({p}) .9290 .6005 -
Asy. MC [ Asy. MC | Asy. MC
LM 9425 977 | .0466 .081 | .4384 .611
QLRors 9242 981 |.0100 .062 | .0872 .470
LR 4374 978 | .0000 .082 | .0000 .412
Fnin - 742 - 224 - .094
Fy - 917 - 130 - 258
FSuin - 1.0 - 025" | - 085
FS, - 1.0 - 072 - .096
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Table 5. Capital growth SURE systems: independence tests

South Americal Africa Asia
p==6 p=06 pP=95
Fi(Ky) 1592 .2503 .3399
Fy(Ky) 3514 2035 2200
F3(K3) .056T .7065 1373
Fy(Ky) .0333* .0589 .2255
F5(K5) .2288 .0143* .0357
Fs(Ks) .3509 .8389 -
({2, , P}) .1592 .2503 .3399
Fy({3, ..., p}) 2249 .0854 .6323
F5({4, ..., p}) 0111 .3004 .0069
Fi({5, ..., p}) 7156 1422 6355
F({p}) 7679 .7581 -
Asy. MC | Asy. MC | Asy. MC
LM .0350 .06% | .1023 .026* | .2449 .367
QLRors .0058 .096 | .0049 .132 | .0000 .002*
LR .0000 .053 | .0000 .249 | .0000 .00%*
Foin - 167 - .063 - 137
Fy - 075 - .080¢ - .056¢
FSnin - .055¢ - .359 - 027
FSy - .086* - 141 - .0971*
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Table 6. Productivity growth SURE systems: independence tests

South Americal Africa Asia
p=26 p==6 pP=5
F(Ky) 9765 1312 .5003
Fy(Ky) 9162 11909 8182
F3(K3) 5362 2965 4958
Fy(Ky) 9976 0242+ 1246
F5(Ks) 9430 .8209 .0918
Fy(K¢) 7528 2454 -
Fi({2, ..., p}) .9765 1312 .5003
B{3, ..., p}) 8294 3912 5421
F5({4, ..., p}) .6037 3738 8683
Fy({5, ..., p}) 9442 0519 2284
F5({p}) .6962 .8069 -
Asy. MC [ Asy. MC | Asy. MC
LM 9913 998 | .0356 .061 | .5070 .698
QLRorLs 9891 .997 | .0012 .074 | .0658 .415
LR 7929  .998 | .0000 .016* | .0000 .266
Fnin - 943 - 111 | - 337
Fy - 979 - 093 - 282
FSimin - 988 - 212 | - 636
FS, - 990 - 152 | - .664
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Table 7. Labor force growth SURE systems: independence tests

South Americ Africa Asia
p==6 a‘ p=©6 p=>5
Fi(K)) 4051 0734 0153
Fy(K>) 4051 2266 684
F3(K3) 1976 .0397 0957
Fy(Ky) .0189* .0153* .8999
F5(K5) .0288* 3571 4434
Fy(Ks) 1011 1761 -
Fi({2,...,p}) 4051 0734 0153
B({3,....p} 2594 1201 5698
F3({4, ..., p}) 5535 .0085* 2187
Fy({5, ..., p}) .0580 .0897 2661
Fs({p}) 0799 4900 -
Asy. MC [ Asy. MC | Asy. MC
LM 0686 .103 | .0007 .004* | .3040 .457
QLRors .0108 .126 | .0000 .006* | .0063 .140
LR .0000 .020 |.0000 .004* | .0000 .194
Finin - 102 - .065" - 062
Fy - .045* | - 021 | - 128
FSpin - 272 - 033 | - 062
FS, - 092 - .008*| -  .050*
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significant, and to a lesser extent the quasi-LR Andests. On looking at the individual sequential
Harvey-Phillips tests, it seems this may be due to correlation between Morocco and Zambia.

For labor force growth (Table 7), we see strong evidence of cross-equation correlation in the
cases of South America and Africa. For Asia, the LR-based tests are not significant at the 10%
level, but induced Harvey-Phillips tests are significant at the 5% level (or close to it).

Overall, these results provide several examples where asymptotic p-values grossly overstate test
significance. Despite this fact, using more reliable finite-sample methods, we also found quite sig-
nificant evidence of contemporaneous correlation between the disturbances in several of the equa-
tions considered, a feature that should be taken into account when analyzing these data. Of course,
it is beyond the scope of the present paper to perform a complete reanalysis of the Fischer (1993)
data.

7. Conclusion

In this paper, we have proposed simulation-based procedures to derive exact p-values for standard
LR and LM independence tests in the context of SURE models. We have also proposed alternative
OLS and IFGLS-based QLR criteria. In multi-equation models, conventional independence tests
only have an asymptotic justification. The reason for the lack of popularity of finite sample proce-
dures is clearly the intractable nature of available distributional results. Here, we have considered an
alternative and considerably more straightforward approach to independence tests. We have shown
that LR and LM statistics are pivotal under the null, which implies that exact critical values can be
obtained easily by MC techniques.

The feasibility of the approach suggested was illustrated through both a simulation experiment
and an empirical application. The results show that asymptotic tests are indeed highly unreliable;
in contrast, MC tests achieve size control and have good power. We emphasize that OLS-based MC
QLR tests performed extremely well. This aspect is important particularly in larger systems, since
test procedures based on iterative estimators are typically more expensive from the point of view
of MC tests. The MC induced tests turned out to have surprisingly good power. Since the MC test
procedure yields size-correct significance points, this approach seems very promising in the context
of non-independent simultaneous tests.
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