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RÉSUMÉ

Dans le contexte des modèles de régression multivariés (MLR), il est bien connu

que les tests asymptotiques usuels tendent à rejeter trop souvent les hypothèses

considérées.  Dans cet article, nous proposons une méthode générale qui permet de

construire des tests exacts pour des hypothèses possiblement non linéaires sur les

coefficients de tels modèles. Pour le cas des hypothèses uniformes linéaires, nous

présentons des résultats sur la distribution exacte de plusieurs statistiques de test

usuelles. Ces dernières incluent le critère du quotient de vraisemblance (Wilks), de même

que les critères de la trace et de la racine maximale.  L'hypothèse de normalité des

erreurs n'est pas requise pour la plupart des résultats présentés.  Ceux-ci ont deux types

de conséquences pour l'inférence statistique. Premièrement, l'invariance par rapport aux

paramètres de nuisance signifie que l'on peut appliquer la technique des tests de

Monte Carlo afin de construire des tests exacts pour les hypothèses uniformes linéaires.

Deuxièmement, nous montrons comment exploiter cette propriété afin d'obtenir des

bornes sans paramètres de nuisance sur la distribution des statistiques de quotient de

vraisemblance pour des hypothèses générales. Même si les bornes ne sont pas faciles à

calculer par des moyens analytiques, on peut les simuler aisément et ainsi effectuer des

tests de Monte Carlo à bornes. Nous présentons une expérience de simulation qui montre

que ces bornes sont suffisamment serrées pour fournir des résultats concluants avec une

forte probabilité. Nos résultats démontre la valeur de ces bornes comme instrument à

utiliser conjointement avec des méthodes d'inférence simulée plus traditionnelles (telles

que le bootstrap paramétrique) que l'on peut appliquer lorsque le test à bornes n'est pas

concluant.

Mots clés : modèle de régression multivarié, régressions empilées, hypothèse linéaire

uniforme, test de Monte Carlo, test à bornes, hypothèse non linéaire, test à

distance finie, test exact, bootstrap



ABSTRACT

In the context of multivariate linear regression (MLR) models, it is well known that

commonly employed asymptotic test criteria are seriously biased towards overrejection. In

this paper, we propose a general method for constructing exact tests of possibly nonlinear

hypotheses on the coefficients of MLR systems. For the case of uniform linear

hypotheses, we present exact distributional invariance results concerning several standard

test criteria. These include Wilks' likelihood ratio (LR) criterion as well as trace and

maximum root criteria.  The normality assumption is not necessary for most of the results

to hold.  Implications for inference are two-fold. First, invariance to nuisance parameters

entails that the technique of Monte Carlo tests can be applied on all these statistics to

obtain exact tests of uniform linear hypotheses. Second, the invariance property of the

latter statistic is exploited to derive general nuisance-parameter-free bounds on the

distribution of the LR statistic for arbitrary hypotheses. Even though it may be difficult to

compute these bounds analytically, they can easily be simulated, hence yielding exact

bounds Monte Carlo tests. Illustrative simulation experiments show that the bounds are

sufficiently tight to provide conclusive results with a high probability. Our findings illustrate

the value of the bounds as a tool to be used in conjunction with more traditional simulation-

based test methods (e.g., the parametric bootstrap) which may be applied when the

bounds are not conclusive.

Keywords : multivariate linear regression, seemingly unrelated regressions, uniform linear

hypothesis, Monte Carlo test, bounds test, nonlinear hypothesis, finite sample

test, exact test, bootstrap
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1. Introduction

Testing the validity of restrictions on the coefficients of a multivariate linear regression
(MLR) model is a common issue which arises in statistics and econometrics. A serious
problem with the MLR model is the fact that, except for very special cases, the distributions
of standard test criteria are either intractable or unknown, because of the presence of
nuisance parameters. In general, only asymptotic approximations are operational. These
however may be highly unreliable, especially in systems with large numbers of equations.
In view of this, the development of finite-sample procedures appears to be particularly
important.

Exact results are available in the literature only for specific test problems. Early refer-
ences can be found in connection with multivariate analysis of variance (MANOVA). These
include the likelihood ratio criterion [ Wilks (1932), Bartlett (1947)], the Lawley-Hotelling
trace criterion [Lawley (1938), Bartlett (1939), Hotelling (1947, 1951)], the Bartlett-Nanda-
Pillai trace criterion [Bartlett (1939), Nanda (1950), Pillai (1955)] and the maximum root
criterion [Roy (1953)]. The literature concerning the moments, Laplace transforms and
exact densities of these statistics is vast; see, for example, Rao (1973, Chapter 8), Anderson
(1984, chapters 8 and 13) and Kariya (1985). However, most of the existing exact results in
this area are limited to a very specific class of hypotheses, namely the uniform mixed linear
(UL) class [see Berndt and Savin (1977)]. Examples of UL hypotheses include: (i) the case
where identical transformations of the regression coefficients (within or across equations)
are set to given values, and (ii) the hypothesis that a single parameter equals zero. For
some recent exact results on tests of UL hypotheses, see Stewart (1997). Note however
not all linear hypotheses can be put in UL form. Further, except for even more restricted
classes of UL hypotheses (for which tables are available), the existing results on general UL
hypotheses are difficult to exploit and approximate distributions are usually suggested.

Thus far less restrictive testing problems have not apparently been considered from a
finite sample perspective, with perhaps the exception of Hashimoto and Ohtani’s (1990)
exact test for general linear restrictions. This procedure is similar to Jayatissa’s (1977) test
for equality of regression coefficients in two linear regressions with unequal error variances.
However, the authors recognize that, similarly with Jayatissa’s procedure, this test involves
complicated computations and has low power. Further, the test relies on a non-unique
transformation of the OLS residuals. These observations suggest that this test has limited
practical interest.

Asymptotic Wald, Lagrange multiplier and likelihood ratio tests are available and
commonly employed in econometric applications of the MLR model; see Berndt and
Savin (1977), Evans and Savin (1982), Breusch (1979), Gouriéroux, Monfort and Renault
(1993, 1995) and Stewart (1995, 1997). It has been shown, however, that in finite sam-
ples, these asymptotic criteria are seriously biased towards overrejection when the number
of equations relative to the sample size is large (even moderately). Well known examples
include Laitinen (1978), Meisner (1979), Bera, Byron and Jarque (1981) and Theil and
Fiebig (1985) on testing homogeneity and symmetry in demand systems. Further evidence

1



for the case of multivariate tests in capital asset pricing models (CAPM) is also available; see
Stambaugh (1982), Jobson and Korkie (1982), Amsler and Schmidt (1985) and MacKinlay
(1987). These and other references are discussed by Stewart (1997).

It is clear that standard asymptotic approximations are quite unsatisfactory in this con-
text. Attempts to improve these include, in particular: (i) Bartlett-type corrections, and
(ii) bootstrap methods. Bartlett corrections involve rescaling the test statistic by a suitable
constant obtained such that the mean of the scaled statistic equals that of the approxi-
mating distribution to a given order [Bartlett (1937), Lawley (1956), Rothenberg (1984),
Barndorff-Nielsen and Blaesild (1986)]. Formulae explicitly directed towards systems of
equations are given in Attfield (1995). Overall, the correction factors require cumulants
and joint cumulants of first and second order derivatives of the log-likelihood function, and,
outside a small class of problems, are complicated to implement. Furthermore, simula-
tion studies [e.g., Ohtani and Toyoda (1985), Frydenberg and Jensen (1989), Hollas (1991),
Rocke (1989), Wong (1989, 1991) and Gonzalo and Pitarakis (1994)] suggest that in many
instances Bartlett adjustments do not work well. A simpler correction factor is proposed by
Italianer (1985), but the procedure is rather heuristic and has little theoretical background.

The use of bootstrap methods for MLR models has been discussed by several authors,
e.g. Williams (1986), Rocke (1989), Rayner (1990a, 1990b), Eakin, McMillen and Buono
(1990), Affleck-Graves and McDonald (1990), Martin (1990), Atkinson and Wilson (1992),
and Rilstone and Veall (1996). Although long recognized as a useful alternative to stan-
dard asymptotic methods, the bootstrap only has an asymptotic justification when the
null distribution of the test statistic involves nuisance parameters, hence the finite sample
properties of bootstrap tests remain to be established. For general discussion of bootstrap
methods, the reader may consult Hall (1992), Efron and Tibshirani (1993) and Shao and
Tu (1995); on econometric applications, see Jeong and Maddala (1993), Vinod (1993) and
Davidson and MacKinnon (1999a, 1999b, 1999c). In a different vein, randomized tests have
been suggested in the MLR literature for a number of special test problems and are re-
ferred to under the name of Monte Carlo tests; see Theil, Shonkwiler and Taylor (1985),
Theil, Taylor and Shonkwiler (1986), Taylor, Shonkwiler and Theil (1986) and Theil and
Fiebig (1985). However, these authors do not supply a distributional theory, either exact
or asymptotic.

Further results relevant to MLR-based test problems may also be found in the econo-
metric literature on seemingly unrelated regressions (SURE) and simultaneous equations.
Indeed, the MLR model can be interpreted as a SURE model with identical regressors across
equations. Alternatively, the SURE model may be nested within an MLR framework, im-
posing exclusion constraints. Hypotheses maintaining the SURE exclusion restrictions are
clearly not compatible with the UL format, which precludes the application of existing exact
procedures. With regards to simultaneous equations, recall that an unrestricted reduced
form is an MLR model. In this context, given the relationship between the structural and
reduced-form parameters, one usually meets non-linear hypotheses. Since hardly any prac-
tical exact procedure appears to be available for the nonlinear case, testing procedures in
simultaneous equations remain for the most part asymptotic. In fact, the existing litera-
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ture on exact tests in both SURE and simultaneous equations models [see, for example,
Dufour and Khalaf (1998a, 1998b), and Dufour (1997)] is very limited. Furthermore, simu-
lation evidence (reported in the latter references) indicates that the asymptotic tests may
have serious shortcomings in such models, and standard size correction techniques are not
appropriate.

In this paper, we propose a general exact method for testing arbitrary - possibly non-
linear - hypotheses on the coefficients of a standard MLR. We first prove a number of
finite sample results dealing with the UL case. While the normality assumption underlies
the motivation for the statistics we consider, this is not necessary for most of the results
obtained. More precisely, an important feature of the MLR model is the fact that several
test criteria derived under the Gaussian assumption [including the likelihood ratio (LR),
the Lawley-Hotelling and Bartlett-Nanda-Pillai trace criteria, and Roy’s maximum root
criterion] are all functions of the eigenvalues of a characteristic determinantal equation
which involves the restricted and unrestricted residual sum-of-squares matrices. Further,
for UL hypotheses, we show these eigenvalues have a distribution that does not depend
on nuisance parameters under the null hypothesis, as soon as the error distribution is
parametrically specified up to an unknown linear transformation (or covariance matrix,
when second moments exist). This invariance property does not appear to have been pointed
out in the earlier literature on inference in the MLR model, especially for non-Gaussian
settings.

Second, even though the entailed (nuisance-parameter-free) null distributions of the test
statistics are typically non-standard, we observe that finite-sample (randomized) tests of
UL hypotheses may then easily be obtained by applying the technique of Monte Carlo (MC)
tests [originally proposed by Dwass (1957) and Barnard (1963)] to the test statistics consid-
ered]. MC tests may be interpreted as parametric bootstrap tests applied to statistics whose
null distribution does not involve nuisance parameters, with however the central additional
observation that the randomized test procedure so obtained can easily be performed in such
a way that the test exactly has the desired size (for a given, possibly small number of MC
simulations); for further discussion, see Jöckel (1986), Hall (1992), Dufour (1995), Dufour
and Kiviet (1996, 1998), Kiviet and Dufour (1997), and Dufour, Farhat, Gardiol and Khalaf
(1998).

Thirdly, for the problem of testing general possibly nonlinear hypotheses, we use the
above invariance results to construct nuisance-parameter-free bounds on the null distribu-
tion of the LR criterion. A very remarkable feature of these bounds is the fact that they
hold without imposing any regularity condition on the form of the null hypothesis, something
even the most general asymptotic theories do not typically achieve. The bounds proposed
are motivated by the propositions in Dufour (1997) relating to likelihood based inference
in MLR settings: using an argument similar to the one in Dufour (1989) for a univariate
regression, we show that LR statistics have null distributions which are boundedly pivotal,
i.e. they admit nuisance-parameter-free bounds. Here we extend this result, e.g. by allow-
ing for non-Gaussian models, and outline a general procedure to construct typically tighter
bounds. Note however that the bound implicit in Dufour (1997)’s demonstrations may be
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obtained as a special - although non-optimal - case of the bounds presented here.
To be more specific, the bounds test procedure for general restrictions can be described

as follows. First, we introduce a UL hypothesis which is a special case of the restrictions to
be tested. Then we argue that the LR criterion associated with the suggested UL hypothesis
provides the desired bound. The result follows from two considerations. First, since the
UL constraints in question were constructed as a special case of the tested hypothesis,
it is evident that the LR statistic for the UL hypothesis (UL-LR) is larger than the LR
test statistic of interest, and thus the UL-LR distribution yields an upper bound (and
conservative critical points) applicable to the LR statistic. Second, the pivotal property
which characterizes the UL-LR statistic (established in our paper) guarantees invariance
with respect to nuisance parameters. The null distributions so obtained associated are
non-standard, so it may be difficult to compute analytically the corresponding conservative
p-values. However, the bounding UL-LR statistics can be easily simulated, hence yielding
exact bounds MC tests.

We conduct a simulation experiment to assess the performance of the bound. We find
that the bounds are sufficiently tight to yield conclusive results with a high probability.
These findings illustrate the value of the bounds test as a tool to be used in conjunction
(possibly) with more traditional methods (e.g., the parametric bootstrap) and not neces-
sarily as an alternative to these methods. Finally, we refer the reader to Dufour and Khalaf
(1998a, 1998b) for extensions to the SURE and simultaneous equations models.

The paper is organized as follows. Section 2 describes the notation and definitions. Sec-
tion 3 discusses the distributional results pertaining to uniform linear hypotheses. Section
4 discusses the testing of general hypotheses in the MLR model and establishes bounds on
the significance points for these statistics. Simulation results are reported in Section 5, and
Section 6 concludes.

2. Framework

The MLR model can be expressed as follows:

Y = XB + U (2.1)

where Y = [Y1, ... , Yp] is an n × p matrix of observations on p dependent variables, X is
an n×K full-column rank matrix of fixed regressors, B = [b1, . . . , bp] is a K×p matrix of
unknown coefficients, and U = [U1, . . . , Up] = [Ũ1, . . . , Ũn]′ is an n×p matrix of random
disturbances. For further reference, let bj = (b0j , b1j . . . , bsj)′, j = 1, . . . , p,where
s = K − 1. We also assume that the rows Ũ ′

i , i = 1, . . . , n, of U satisfy the following
distributional assumption:

Ũi = JWi , i = 1, . . . , n , (2.2)
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where the vector w = vec(W1, . . . , Wn) has a known distribution and J is an unknown, non-
singular matrix. In this context, the covariance matrix of Ũi is Σ = JJ ′, where det (Σ) �= 0.
For further reference, let W = [W1, . . . , Wn]′ = U

(
J−1

)′. In particular, assumption (2.2)
is satisfied when

Wi
i.i.d.∼ N(0, Ip) , i = 1, . . . , n . (2.3)

An alternative representation of the model is

y = (Ip ⊗X)b + u (2.4)

where y = vec(Y ), b = vec(B), and u = vec(U). The least squares estimate of B is

B̂ = (X ′X)−1X ′Y (2.5)

and the corresponding residual matrix is

Û = Y −XB̂ = MY = MU (2.6)

where M = I−X(X ′X)−1X ′. In this model, it is well known that under (2.3) the maximum
likelihood estimators (MLE) of the parameters reduce to B̂ and Σ̂ = Û ′Û/n. Thus the
maximum of the log-likelihood function (MLF) over the unrestricted parameter space is

max
B,Σ

ln(L) = − np

2
ln(2π) − n

2
ln(|Σ̂|) − np

2
. (2.7)

3. Uniform linear hypotheses in the multivariate linear

model

In this section, we establish an exact finite-sample distributional invariance result for several
usual test statistics in the MLR model (2.1). This result obtains on assuming Gaussian or
non-Gaussian errors, provided the latter have a distribution which is specified up to the
unknown matrix J . Specifically, we show that, for a wide class of linear hypotheses, the
null distributions of the test statistics are free of nuisance parameters.

The fundamental invariance property applies to the case where the constraints take the
special UL form

H0 : RBC = D (3.1)

where R is a known r×K matrix of rank r ≤ K, C is a known p× c matrix of rank c ≤ p,
and D is a known r × c matrix. We will first study the problem of testing

H01 : Rβj = δj , j = 1, . . . , p , (3.2)

which corresponds to C = Ip. In this context, the most commonly used criteria are: the LR
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criterion [Wilks (1932), Bartlett (1947)], the Lawley-Hotelling (LH) trace criterion [Lawley
(1938), Bartlett (1939), Hotelling (1947, 1951)], the Bartlett-Nanda-Pillai (BNP) trace cri-
terion [Bartlett (1939), Nanda (1950), Pillai (1955)], and the maximum Root (MR) criterion
[Roy (1953)].1 All these test criteria are functions of the roots m1, m2, . . . , mp of the
equation

|Û ′Û −mÛ ′
0Û0| = 0 (3.3)

where Û ′
0Û0 and Û ′Û are respectively the constrained and unconstrained sum of squared

errors (SSE) matrices. For convenience, the roots are reordered so that m1 ≥ . . . ≥ mp. In
particular, we have:

LR = −n ln(L) , L = |Û ′Û |/|Û ′
0Û0| =

p∏
i=1

mi (3.4)

where L is the well known Wilks statistic, and

LH =
p∑

i=1

(1 −mi)/mi ,

BNP =
p∑

i=1

(1 −mi) ,

MR = max
1≤i≤p

(1 −mi)/mi .

Now consider the following decomposition of the SSE matrix Û ′Û :

Û ′Û = U ′MU = J
[
U

(
J−1

)′]′
M

[
U

(
J−1

)′]
J ′

= JW ′MWJ ′ (3.5)

where the matrix W = U(J−1)′ defined by (2.2) has a distribution that does not involve
nuisance parameters. In other words, Û ′Û depends on Σ only through J . Similarly, Û ′

0Û0

can be expressed as

Û ′
0Û0 = JW ′M0WJ ′ (3.6)

where M0 = M −X(X ′X)−1R′[R(X ′X)−1R′]−1R(X ′X)−1X ′. These observations yield the
following basic distributional result.

Theorem 3.1 Distribution of determinantal roots. Under (2.1), (2.2) and H01,
the vector (m1, m2, . . . , mp)′ of the roots of (3.3) is distributed like the vector of the

1Note that the criteria LH and BNP can be interpreted as Wald and Lagrange multiplier test statistics,
respectively. For details of the relationship, see Berndt and Savin (1977), Breusch (1979) or Stewart (1995).
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corresponding roots of ∣∣W ′M W −mW ′M0W
∣∣ = 0 (3.7)

where M is defined as in (2.6), M0 as in (3.6), W = U
(
J−1

)′ and the roots are put in
descending order in both cases.

PROOF: From (3.5) and (3.6), we have:

Û ′Û = JW ′MWJ ′ ,
Û ′

0Û0 = JW ′M0WJ ′ .

Consequently, the determinantal equation (3.3) can be expressed as∣∣JW ′MWJ ′ −mJW ′M0WJ ′∣∣ = 0 ,

hence

|J | ∣∣W ′MW −mW ′M0W
∣∣ ∣∣J ′∣∣ = 0

and ∣∣W ′M W −m W ′M0 W
∣∣ = 0 .

Since the vector w = vec(W1 , ... , WN ) has a completely specified distribution, the roots of
equation (3.7) have distributions which does not involve any unknown parameter. Q.E.D.

The above result entails that the joint distribution of (m1, . . . , mp)′ does not depend on
nuisance parameters. Hence the test criteria obtained as functions of the roots are pivotal
under the null and have a completely specified distribution under assumption (2.2). On the
basis of this theorem, the distribution of the Wilks’ L criterion can be readily established.

Corollary 3.2 Distribution of Wilks’ statistic. Under the assumptions of Theo-
rem 3.1, Wilks’ L statistic for testing H01 is distributed like the product of the roots of
|W ′MW −mW ′M0W | = 0.

It may be useful, for simulation purposes, to restate Corollary 3.2 as follows.

Corollary 3.3 Distribution of Wilks’ statistic as ratio. Under the assumptions
of Theorem 3.1, Wilks’ L statistic for testing H01 is distributed like |W ′MW | / |W ′M0W | .

We now turn to the general UL hypothesis (3.1). In this case, the model may be
reparametrized as follows:

Yc = XBc + Uc (3.8)
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where Yc = Y C, Bc = BC and Uc = UC with covariance C ′ΣC. The corresponding null
hypothesis takes the form RBc = D. The proof then proceeds as for Theorem 3.1. We
emphasize again that the above results do not require the normality assumption.

Eventually, when the normality hypothesis (2.3) holds, the distribution of the Wilks
criterion is well known and involves the product of p independent beta variables with degrees
of freedom that depend on the sample size, the number of restrictions and the number of
parameters involved in these restrictions. The reader may consult Anderson (1984) and Rao
(1973). For completeness sake, we restate this result in Appendix A. Note that Theorem
3.1 is not explicitly stated by Anderson (1984) or Rao (1973), although it can be derived
by looking at their demonstrations.2

For non-Gaussian errors [i.e. when Wi follows a known distribution which differs from
the N(0, Ip) distribution], the null distribution of Wilks’ statistic may not be analytically
tractable. However, the above invariance results can be used to obtain Monte Carlo tests
that are applicable given the distributional assumption (2.2). Such procedures were origi-
nally suggested by Dwass (1957) and Barnard (1963). In Appendix B, we briefly outline the
methodology involved as it applies to the present context; for a more detailed discussion,
see Dufour (1995), Dufour and Kiviet (1996, 1998), Kiviet and Dufour (1997), and Dufour
et al. (1998).

To conclude, observe that even in the Gaussian case, it may be more convenient to obtain
critical points by simulation. Indeed, it is clear that the null distribution as characterized
by Anderson or Rao is not so suitable, in general, for analytical computations (except for
specific cases reviewed in Appendix A). Finally, recall that not all linear hypotheses can be
expressed as in H0; we discuss other types of hypotheses in the following section.

4. General hypotheses in the multivariate linear model

In this section, we study the problem of testing general hypotheses on the coefficients of the
MLR model. Exact bounds on the null distributions of the LR statistic are derived, which
extend the results in Dufour (1989) to the multi-equation context. The bounds are based
on the distributional results of the previous section and can be easily simulated. Formally,
in the context of (2.4) consider the general hypothesis

H∗
0 : R∗b ∈ ∆0 (4.1)

where R∗ is a q∗ × (pK) matrix of rank q∗, and ∆0 is a non-empty subset of R
q∗. This

characterization of the hypothesis includes cross-equation linear restrictions and allows for
nonlinear as well as inequality constraints. The relevant LR statistic is:

LR∗ = n ln(Λ∗) , Λ∗ = |Σ̂∗
0|/|Σ̂| (4.2)

2The distributions derived in Anderson (1984) and Rao (1973) establish the pivotal characateristic of
Wilks’ criterion in Gaussian contexts.
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where Σ̂∗
0 and Σ̂ are the MLE of Σ imposing and ignoring H∗

0 . In general, the null dis-
tribution of LR∗ depends on nuisance parameters [see Breusch (1980) in connection with
the general linear case]. Here we show that LR∗ is a boundedly pivotal statistic under the
null hypothesis, i.e. its distribution can be bounded in a non-trivial way by a nuisance-
parameter-free function. To do this, we shall extend the methodology proposed in Dufour
(1989) in the context of single equation linear models. Furthermore, we exploit the invari-
ance result which we established above in the UL hypothesis case. The method of proof
we present next is likelihood based, in the sense that we explicitly use the Gaussian log-
likelihood function. However, as will become clear from our analysis, it is trivial to rewrite
proofs and results in the Least Squares framework.

Consider the MLR model (2.4) and let L(HU) denote the unrestricted MLF. In the
Gaussian model, L(HU ) is expressed by (2.7). Further, suppose we can find another set of
UL restrictions H∗∗

0 : R̃BC = D such that H∗∗
0 ⊂ H∗

0 . Now define L(H∗
0 ), L(H∗∗

0 ) to be the
MLF under H∗

0 and H∗∗
0 respectively. Under assumption (2.3),

L(H∗
0 ) = − np

2
ln(2π) − n

2
ln(|Σ̂∗

0|) − np

2
, (4.3)

L(H∗∗
0 ) = − np

2
ln(2π) − n

2
ln(|Σ̂∗∗

0 |) − np

2
, (4.4)

where Σ̂∗∗
0 is the MLE under H∗∗

0 . Then it is straightforward to see that

L(H∗∗
0 ) ≤ L(H∗

0 ) ≤ L(HU ) . (4.5)

Using (4.3), (4.4) and (4.5), we see that

Λ∗ ≤ Λ∗∗ (4.6)

where

Λ∗∗ = |Σ̂∗∗
0 |/|Σ̂| . (4.7)

It follows that P [Λ∗ ≥ x] ≤ P [Λ∗∗ ≥ x], ∀x, where P [Λ∗∗ ≥ x], as demonstrated in Section
3, is nuisance-parameter free and may be used to obtain exact procedures in finite samples
on applying Monte Carlo test methods (see Appendix B).

At this point, it is worth noting that normality [hypothesis (2.3)] by no way constitutes
a necessary assumption in this case. Indeed, inequality (4.6) follows from the properties of
least squares estimation irrespective of the true density function. Furthermore, the critical
values of the bounding statistic may still be determined using the MC test method under
the general assumption (2.2). For further reference, we call the MC test based on the
conservative bound a bounds Monte Carlo (BMC) test. We now state our main result for
model (2.4) given the distributional assumption (2.2).

Theorem 4.1 Bounds for general LR statistics. Consider the MLR model (2.4)
with (2.2). Let Λ∗ be the statistic defined by (4.2) for testing R∗b ∈ ∆0, where R∗ is a
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q∗ × (pK) full column rank matrix and ∆0 is a non-empty subset of R
q∗. Further, con-

sider restrictions of the form R̃BC = D that satisfy R∗b ∈ ∆0 with q̃ = min(r, c), r =
rank(R̃), c = rank(C). Let Λ∗∗ be the inverse of Wilks criterion for testing the latter re-
strictions. Then under the null hypothesis, P [Λ∗∗ ≥ λ∗∗(α)] ≤ α, for all 0 ≤ α ≤ 1 , where
λ∗∗(α) is determined such that P [Λ∗∗ ≥ λ∗∗(α)] = α.

For completeness, we proceed next to state our main conclusion for the Gaussian model.
Let Ψα (·) be such that

P [Ψ(v1,v2, v3) ≥ Ψα(v1, v2, v3)] = α , 0 ≤ α ≤ 1 , (4.8)

where Ψ(v1, v2, v3) is distributed like the product of the inverse of v2 independent beta
variables with parameters (1

2 (v1 − v2 + i), v3
2 ), i = 1, . . . , v2. Then, we can prove the

following theorem.

Theorem 4.2 Bounds for general LR statistics: Gaussian model. Consider the
MLR model (2.4) with (2.2) and (2.3). Let Λ∗ be the statistic defined by (4.2) for testing
R∗b ∈ ∆0, where R∗ is a q∗×pK with rank q∗ and ∆0 is a non-empty subset of R

q∗. Further,
consider restrictions of the form R̃BC = D that satisfy R∗b ∈ ∆0. Then, under the null
hypothesis, for all 0 ≤ α ≤ 1, P [Λ∗ ≥ Ψα(n − K, p, q̃)] ≤ α , where q̃ = min(r, c), r =
rank(R̃), c = rank(C) and Ψα (·) is defined by (4.8).

Indeed, under (2.3), Λ∗∗ is distributed like Ψ(n−K, p, q̃); see Appendix A. Using (4.6)
and (4.8), we have

P [Λ∗ ≥ Ψα(n−K, p, q̃)] ≤ α , 0 ≤ α ≤ 1 . (4.9)

Consequently, the critical value Qα defined by

Qα = Ψα(n −K, p, q̃) (4.10)

is conservative at level α. Of course, one should seek the smallest critical bound possible.
This would mean expressing R̃ so that q̃ is as small as possible.

Clearly, the above results hold when the hypothesis is linear of the form R∗b = δ0. It
is worth mentioning at this stage that exact bounds have been proposed in the literature
for a specific test problem, namely testing the efficiency hypothesis in the Capital Asset
Pricing model (CAPM) contexts; see Stewart (1997) and Shanken (1986). Dufour and
Khalaf (1998a) reconsider this example from the finance literature and show that both
bounds obtain as a special case of Theorem 4.2.

To conclude, note that Theorems 4.1 and 4.2 have further implications on LR-based
hypothesis tests. The fact that the null distribution of the LR statistic can be bounded (in
a non trivial way) implies that alternative simulation-based test techniques may be used to
obtain valid p-values based on the statistic in (4.2). See Dufour (1997) for further discussion
of the boundedly-pivotal test property and its implications on the potential usefulness of
standard size correction techniques.
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Eventually, when the BMC p-value is not conclusive, alternative MC and/or bootstrap
type methods may be considered. However, we emphasize the fact that the BMC procedure
can be implemented in complementarity with such methods. Indeed, if the BMC p-value
is less than or equal than α, then it follows from Theorem 4.1 that the exact p-value will
most certainly reject the null at level α. Our point is that the bounds are very easy to
simulate, since they are based on UL-LR criteria; to see this, refer to Corollaries 3.2 - 3.3.
In contrast, alternative simulation based size corrections procedures including the bootstrap
require realizations of the test statistic at hand. It is well known that general-restrictions-
LR criteria typically require numerical iterative procedures (even under certain non-UL
linear constraints). In view of this, it is advantageous to construct a BMC p-value first, to
avoid costly constrained maximizations and the associated numerical problems.

5. Simulation study

This section reports an investigation, by simulation, of the performance of the various
proposed statistics under UL constraints as well as more general contexts.

5.1. Design

We considered the following designs.
D1. MLR system, within-equation UL constraints

Model: (2.1) with K = p + 1;
HD1

0 : (0, 1, ..., 1)B = 0 ;
p = 5, 7, 8 ; n = 20, 25, 40, 50, 100 .

D2. MLR system, cross-equation UL constraints
Model: (2.1) ;
HD2

0 : (3.1) ;
p = 11, 12, 13 ; K = 12, 13 ; r = 12, 13 ; c = 11, 12, 13 .

D3. MLR system, cross-equation constraints
Model: (2.1) ;
HD3

0 : bjj = b11 , j = 2 , ... , p and bkj = 0 , j �= k , j, k = 1 , . . . , p ;
p = 3, 5 ; n = 25 .

D4. MLR system, non-linear constraints
Model: (2.1) with K = 2 ;
HD4

0 : b0j = γ(1 − b1j) , j = 1 , ... , p , γ unknown;
p = 40 ; n = 60 .

Experiments D1 and D2 illustrate the UL case. D1 is modelled after the study in Attfield
(1995) whose purpose was to demonstrate the effectiveness of Bartlett adjustments. How-
ever, the example analyzed there was restricted to a two-equations model. This experiment
may be viewed as an illustration of homogeneity tests in demand systems. D2 studies the
size of Rao’s F test when (A.1) is valid only asymptotically; in the subsequent tables, the
latter test is denoted FRAO

asy . Experiments D3 and D4 consider more general restrictions and
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are designed to assess the performance of the bounds procedure. Experiment D3 focuses
on general linear restrictions, including exclusion and cross-equation equality constraints.
Experiment D4 is modelled after multivariate CAPM tests [see Stewart (1997)]. We consid-
ered 40 equations with 60 observations following the empirical example analyzed in Stewart
(1997).

For each model, a constant regressor was included and the other regressors were indepen-
dently drawn (once) from a normal distribution; the errors were independently generated
as i.i.d. N(0,Σ) with Σ = GG′ and the elements of G drawn (once) from a normal distri-
bution. The regression coefficients are reported in Table 1. The power of the tests in (D1,
n = 25, p = 8), and D3 were investigated by simulating the model with the same parameter
values except for b11.

The statistics examined are the relevant LR criteria defined by (3.4) and (4.2). To
derive the LR statistic in D4, the constrained MLE was numerically computed according
to Shanken (1986). For the purpose of the power comparisons conducted in D3 and D4,
we performed: (i) the standard asymptotic LR test (size corrected when needed, using an
independent simulation), and (ii) the parametric bootstrap test to which we refer as the
”Local” Monte Carlo (LMC) test. The latter procedure is based on simulations that use a
restricted ML estimator. The subscripts asy,BMC, LMC and PMC refer respectively to
the standard asymptotic tests, the MC bounds tests, the LMC test and the pivotal statistics-
based Monte Carlo test. The BMC test performed in D3 is based on the LR statistic which
corresponds to the UL constraints setting all coefficients except the intercepts to specific
values. In the case of D4, the BMC test corresponds to the following UL restrictions:
b0j = γ(1 − b1j) , j = 1 , ... , p, γ known. In D1 we have also considered the Bartlett-
corrected LR test [Attfield (1995, Section 3.3)] which we denote LRc. The MC tests were
applied with 19 and 99 replications. We computed empirical rejection frequencies, based
on a nominal size of 5% and 1000 replications. All the experiments were conducted using
Gauss-386i VM version 3.1. Note here that the number of simulated samples used for the
MC tests has no effect on size, but it may affect power.

5.2. Results and discussion

The results of experiments D1-D3 are summarized in Tables 2 to 6. The results of experi-
ment D4 are as follows. The observed size of the asymptotic test was 89.5%. In contrast,
the LMC and BMC tests show empirical type I error rates (.047 and .038) compatible with
their nominal 5% level. Our results show the following.

5.2.1. Test sizes

First, it is evident that the asymptotic tests overreject substantially. Although this problem
is well documented, observe that in some cases empirical sizes ranged from 75% to 100%.
Second, the Bartlett correction, though providing some improvement, does not control the
size in larger systems. From the results of D2, we can see that the asymptotic F test - when
applicable - performs better than the standard χ2 test, but size correction is still needed.
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Table 1. Coefficients for the simulation experiments

bkj =
{

.1 , j = 1 , ... , I[p/2]

.2, j = I[p/2] + 1 , ... , p
, k = 1 , ... , p− 1

D1. bpj =
∑p−1

k=1 bkj, j = 1 , ... , p ,

β0j =
{

1.2 , j = 1 , ... , I[p/2]
1.8, j = I[p/2] + 1 , ... , p

D2. R,B,C drawn (once) as NID(0, I)

p = 3 p = 5

D3. B =




1.2 .8 −1.1
.1 0 0
0 .1 0
0 0 .1


 B =




1.2 .8 −1.1 1.9 −.2
.1 0 0 0 0
0 .1 0 0 0
0 0 .1 0 0
0 0 0 .1 0
0 0 0 0 .1




D4. γ = .009 and b1j , j = 1 , ... , p, drawn (once) as NID(0, .16)

Table 2. Empirical levels of various tests: experiment D1

p = 5 p = 7 p = 8
n LRasy LRc LRPMC LRasy LRc LRPMC LRasy LRc LRPMC

20 .295 .100 .050 .599 .250 .042 .760 .404 .051
25 .174 .075 .045 .384 .145 .036 .492 .190 .045
40 .130 .066 .052 .191 .068 .045 .230 .087 .049
50 .097 .058 .049 .138 .066 .041 .191 .073 .054
100 .070 .052 .050 .078 .051 .049 .096 .052 .053

Table 3. Test powers: Experiment D1

n = 25, p = 8; H0 : b11 = .1

b11 .2 .4 .8 1.0 1.4
LRasy .055 .176 .822 .965 1.0

LRPMC (N = 19) .054 .165 .688 .881 .991
LRPMC (N = 99) .056 .173 .799 .950 .999
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Table 4. Empirical levels of various tests: experiment D2

( p,K, r, c) LRasy FRAO
asy LRPMC

13, 12, 12, 13 1.00 .198 .047
11, 12, 12, 11 1.00 .096 .054
12, 12, 12, 12 1.00 .114 .048
12, 13, 13, 12 1.00 .225 .038

Table 5. Empirical levels of various tests: experiment D3

p = 3 p = 5
LRasy LRLMC LRBMC LRasy LRLMC LRBMC

.122 .055 .036 .310 .044 .029

Table 6. Test powers: experiment D3

H0 : b11 = .1

N = 19 N = 99
p = 3

b11 .3 .5 .7 .9 1.0 .3 .5 .7 .9 1.0
LRasy .140 .522 .918 .995 1.0 .140 .522 .918 .995 1.0
LRLMC .137 .468 .849 .987 .991 .135 .539 .912 .995 1.0
LRBMC .095 .404 .799 .963 .987 .099 .441 .861 .986 .999

p = 5
b11 .3 .5 .7 .9 1.1 .3 .5 .7 .9 1.1
LRasy .128 .515 .904 .995 1.0 .128 .515 .904 .995 1.0
LRLMC .138 .467 .937 .967 1.0 .137 .537 .904 .994 1.0
LRBMC .120 .427 .792 .958 .995 .110 .484 .877 .990 1.0

The size of the PMC test corresponds closely to 5%. The levels of the BMC test are
adequate in all experiments.

5.2.2. Test powers

Experiment D1 reveals that the PMC tests have good power (see Table 3) even with N
as low as 19. With N = 99, we do not observe any significant power loss for tests having
comparable size, although the power study focuses on the eight-equations model with just 25
observations. LMC tests provide substantial improvement over conventional asymptotics:
the procedure corrects test sizes with no substantial power loss. A striking observation in the
case of D3 is that the conservative bound provides conclusive results with high probability.
Increasing the number of equations does not have a great effect on the relative performance
of all MC methods proposed. An interesting experiment that bears on this problem is
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