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RESUME

Des études récentes suggérent que la variance conditionnelle des rendements
financiers est sujette a des sauts. Ce papier étend une procédure non paramétrique de
détection de sauts développée par Delgado et Hidalgo (1996) a la détection de sauts dans
les moments conditionnels supérieurs, en particulier la variance conditionnelle. Les
résultats de simulation démontrent que cette procédure estime de fagon raisonnable le
nombre de sauts ainsi que leurs emplacements. L'application de cette procédure aux
rendements journaliers sur l'indice S&P 500 révele la présence de plusieurs sauts dans la

variance conditionnelle.

Mots clés : sauts, variance conditionnelle, noyau, fenétre unidirectionnelle

ABSTRACT

Recent work suggests that the conditional variance of financial returns may exhibit
sudden jumps. This paper extends a non-parametric procedure to detect discontinuities in
otherwise continuous functions of a random variable developed by Delgado and Hidalgo
(1996) to higher conditional moments, in particular the conditional variance. Simulation
results show that the procedure provides reasonable estimates of the number and location
of jumps. This procedure detects several jumps in the conditional variance of daily returns
on the S&P 500 index.

Key words : jumps, conditional variance, kernel, one-sided windows



1 Introduction

In the past fifteen years, a large amount of attention has been paid to the properties of
second moments of financial data. Proper account of the conditional variance of financial
data is important for inference purposes as well as for empirical implementation of options
pricing models and optimal hedge portfolios. To capture the apparent volatility clustering
found in financial data, Engle (1982) suggested in a seminal paper the ARCH model in
which the conditional variance, h;, is a linear function of past squared returns. Since then,
numerous extensions of the ARCH model have been suggested, such as the very popular

GARCH model (Bollerslev (1986)):
ht = g + ozly,?,l “+ ...+ Ozpyffp + ﬁlht—l + ...+ ﬁqht_q (1)

Other variants were developed to capture phenomena such as asymmetry , kinks, and dis-
continuities for which the original ARCH model is poorly suited.

As an alternative to this wide variety of parametric models, Pagan and Schwert (1990),
Pagan and Ullah (1988) and Pagan and Hong (1991) have used various non-parametric es-
timators of the conditional variance. These estimators assume that the conditional variance
process is smooth, and they will be inconsistent at any point of discontinuity. Early evidence
for the existence of discontinuities in the conditional variance was provided by Lamoureux
and Lastrapes (1990); Hamilton and Susmel (1994) and Cai (1994) provided simple paramet-
ric forms by adding a Markov chain to an ARCH model. This framework has been extended
recently by Dueker (1997) and Francq and Zakoian (1999) by allowing for GARCH processes
and by Maheu and McCurdy (1999) by allowing duration-dependent transition probabilities.
The advantage of these models relative to standard GARCH formulations is that they can
adapt much more quickly to periods of high or low volatility. GARCH models are too persis-
tent to capture a sudden increase in volatility; similarly, shocks to the conditional variance
die out too slowly to capture certain historical episodes.

This paper will thus test for the presence of jumps in the volatility of financial returns.
The methodology used is a suitably modified version of a non-parametric kernel estimator
suggested by Delgado and Hidalgo (1996). In view of the numerous parametric models that

have been suggested to model time-varying volatility, the non-parametric approach seems
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promising. Misspecification of the continuous component of the conditional variance may
lead to erroneous inference on the presence of jumps. The test is derived by using one-
sided windows, first introduced by Miiller (1992), in estimating the conditional variance. At
points where a jump occurs, the left-hand side and right-hand side estimates will converge
to the left and right limit respectively at that point. The difference between these estimates
provides the basis for the detection of a jump.

The paper is organized as follows: section 2 will describe the non-parametric procedure to
detect discontinuities in a regression function as developed by Delgado and Hidalgo (1996)
and its application to the detection of jumps in the conditional variance. The finite-sample
performance of this procedure is analyzed in section 3 through a simulation experiment.
Section 4 will present empirical results using weekly returns on the Standard and Poor’s 500

index, and section 5 will conclude. All proofs are relegated to a mathematical appendix.

2 Non-parametric jump detection in the conditional
variance

In this section, we present results on the estimation of jumps in the conditional variance in a
nonparametric fashion. The reader is referred to Delgado and Hidalgo (1996) for more detail
on the procedure.

For simplicity, assume that v, is a random variable with zero mean. We will estimate the

conditional moments of 3; by using the functional representation:

G (y) = m(Xy) +u = g (Xe) + S (Zy) +u(Xy) (2)

where G' and g are continuous functions, X; = (Xi4,... ,Xp+1¢)' is a p + 1 vector whose
last element is time defined as a fraction of the sample X1, = % where T is the sample
size, S (Z;) is a step function with finite jumps whose argument is a member of X;, and
u (X}) is a stochastic disturbance term with £ (u (X;)|X;) = 0. For notational simplicity,
the dependence of S on Z; and v on X; will be suppressed in the following and simply written

as u; and S;. The leading candidates for inclusion in X; are lagged values of the dependent



variable, y;_1, ..., y+—,. Delgado and Hidalgo (1996) analyzed the case where G (y;) = y;.

The model suggested is general in terms of the mechanism triggering changes in S;. The
changes, however, are assumed to be explained by the £ member of X which we denote by
Z, possibly “time”. Using “time” to identify the occurrence of jumps does not mean that
we actually believe that the passage of time is the determining factor in leading to a jump.
Rather, any variable that causes the jumps would have to be consistent with the findings
obtained by assuming that “time” causes them.

The non-parametric estimator of the regression function that we will analyze is the usual

Nadaraya-Watson kernel estimator of m (x):

Zfl (Xt m)G(yt)
> K (¥52)

where K : RP*! — R is a kernel and b is the usual bandwidth parameter. For simplicity, the

i (1) =

(3)

class of kernels we will analyze is of multiplicative form:

Xi—x o X — o Xp+1t—$p+1
(P ) = n () ok (P W

The Delgado and Hidalgo (1996) approach for detecting discontinuities is to look at the

where k£ : R — R.

difference between kernel estimates with one-sided windows along the values of Z;:

S KT (%) G(y:) B Pt (2)
YLk (5E) 16

it (z) =

and

o Zt 1 K <_> G(y) _ ﬁ: (2) (6)
f

S K (%) (2)
with K~ (Zt Z) =k~ (&%) | (Xs£=22) where k~(-) has domain R~ and K*(%) =
kT (42) [Tk (Xs£=22) where k¥ (-) has support on RT. This means that m ™ (z) averages

values of G (y;) with Z, greater than z, and m ™ (z) averages points where Z, is less than
z. Often, we will refer to these estimators as right-side and left-side estimators respectively

for obvious reason. These estimators were introduced by Miiller (1992) with X; = Z; = %.
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At points of continuity of S (Z), all three estimators (m (z),m* (z),m™ (z)) will converge
to the same value, m (z). At points where S (Z) is not continuous, all three estimators will
converge to different values with m (2) inconsistent in this case.

Decompose the conditional variance as:
he = var (y|Fio1) = B [y7|Fia] — {E [p| Fia]}? (7)

where F; | is the sigma-field generated by past information and estimate each term by

left-sided and right-sided kernel estimates. The appropriate estimator is:

T + ( Zi=z),2 T + ( Zi—z 2
~ Zt:lK (T)yt Zt:lK (T)yt

B I S .
B [Re]
fer [T
= W3 (z) — [mi ()]

For the remainder of the paper, the + notation refers to the right-side or left-side estimate
as appropriate. The two-sided version of this estimator has been analyzed by Masry and
Tjostheim (1995). The behavior of each of M (z) and M (2) is obtained directly from
Delgado and Hidalgo (1996). The asymptotic distribution of h* (2) however is complicated
by the correlation between the two terms and will be derived below.

Define the process:

A(z)=h"(2) = h (2). (9)

The framework is applicable to multiple jumps, and these can be estimated sequentially.
Suppose that there are M jumps, with M known, an assumption we will relax later. That
is,

S(Z)=Do+ D1 (Zy > 21) + ...+ Ay (2 > 2m)
with Ay > ... > A, without loss of generality. Define the estimate the first jump point as
Z] =arg max [ﬁ(z)] i where Q) = [z,Z] for some z,Z € int (x), the sample space of Z. After

Z€EQ
the first jump is estimated by Zzj, the estimate of the second jump point is obtained in a



similar fashion, but due to the uncertainty in the exact value of 21, it is necessary to trim the
interval over which we search for the next jump. An almost sure bound derived by Yin (1988)
is used to prevent the presence of another jump in the vicinity of an estimated jump. When
estimating the &% jump, we search over Q* = Q — Uf;ll Q; with Q; = [2; — 2b,z; + 2b]. The

distribution of the resulting estimates is summarized in the following theorem:

Theorem 1 Under assumptions A1-A3 and B1-B5 of Delgado and Hidalgo (1996), with Zj

€t (Qk) ,
(4) (prfl)% (Ze — 21) Y 0, ’7(1)5 (zk) i
A () [k O)] 1 (1)
1/ S
(ZZ) (pr+1) 2 <Ah (/Z\k) - Ah (Zk)) i N <0, ’y((}?(—zi’;k))
and Z1,2s, . .., 2y are independent; where

ka)(y) is the first derivative of the left-hand kernel at v,
f (zx) is the density of X with Z = z,
Yin) = i [K n) (v)} i dv, the integral of the n'* derivative of the left-hand kernel,
S (z1) = [(034 (2x) + 03 (26)) +4m (z4)" (03 (26) + 01 (2)) — 4mi (2) H ()] ,
o2 (z) the left-side and right-side variance of u; at z, and
H (z) = B [uf (z1)u3 ()] + E [u7 (z) uz (2)] + B [uf (21) m3 ()]
+E [uy (z1) my ()] + E [ug (ze) mi (2x)] + B [uy (z) my (21)] -

Note that the rate of convergence in the previous theorem is slower than the \/T rate
obtained in parametric models. ' However, in contrast to parametric models (see Bai (1997)
and Bai and Perron (1998)), the absence or presence of other jumps does not change the
behavior of the break point estimates. This is due to the local nature of kernel estimation.

Notice that if we are ready to assume that the mean function does not have any dis-

continuity, the problem simplifies since the estimates of the mean cancel out from Ah(z) if

"Loader (1996) develops an alternative procedure which achieves convergence at rate V/T. However, this
requires putting non-zero weight on the current observation which is undesirable in this case. See Pagan and

Hong (1991) for this point.
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m{ = m; = my. In this situation, we can look for jumps in the conditional variance by
looking for jumps in y2 only since A, (z) = M} (z) — i, (z) which does not depend on the
mean and use the results in Delgado and Hidalgo (1996) directly. An alternative approach
to dealing with the mean is to use a parametric model, such as one from the ARMA class
or a Markov-switching model. In this case also, the distribution of A, (z) and %}, does not
depend on the estimated mean since the parametric estimates of the mean will converge at

a faster rate than the non-parametric estimates of the higher moments.

In the case of financial returns, we can obtain more precise formulas. Decompose returns

as usual as:
1
ye = mi(Xy) +hie (10)
= ml(Xt)+U1t (11)
where ¢; is assumed i.i.d. (0,1) and independent of h; = E; 1 [u3,] = E[u?|F, 1], the

conditional variance of y;. The formulas from theorem 1 in this special case are contained in

the following corollary:
Corollary 2 In model (10),

S (z) = [* (2)? + b (2)?] E (62 = 1) — 48 (z) h (2)? B (&8) — 422 (z) b~ (1)
where Aq (zx) = mi (z) — my (1) -

This corollary allows us to construct plug-in estimates of the standard errors of both the
jump points and the jump sizes.

In the previous results, the number of jumps, M, was assumed to be known, a situation
unlikely in practice. Theorem 1 leads to a sup test for the presence of 57 jumps against only

7 — 1. Define the statistic

gj =sup
qeQi

A (9) f (q)

S(q) Y(0) (12)

This is simply the largest values of the t-statistic for the hypothesis Ap, (z;) = 0. The

distribution of the test is:



Theorem 3 Under the same assumptions as in theorem 1 and [ ki (u) k(j) (u)du = 0, if

Ap(z,) =0, asT — o0

b [(10°) 1B, < o] — [[exp [-2050 (~ B} (9~ C4)]

=1

b o \ [kt (u)?du

1
. 3 : , w)2du ) 2
where By = [2 In (Mﬂ * X () is Lebesque measure, and Ci. = B’T—i-—Blj In [—1 (7f () d ) ] .
T

A stopping rule must then be chosen. A possibility is to stop if the p—value of the above
test is greater than a predetermined significance level. Unfortunately, this procedure will not
consistently estimate M, since at each step there is always a positive probability of rejecting
the null hypothesis regardless of sample size. Thus, when the procedure arrives at stage
M + 1, the test of M + 1 versus M jumps gives a non-zero probability of not rejecting the
additional jump, no matter how large the sample size is. Thus, this procedure will overstate
the number of jumps selected. However, in practice, the probability of overspecifying the
number of jumps will go down very quickly. For a significance level « for the tests, the
probability of overspecifying the number of jumps by j is a/. At usual significance levels, this
goes to zero very quickly. An alternative would be to let . approach zero at an appropriate
rate.

The technique presented here suffers from obvious drawbacks. Because it requires the
deletion of a large number of observations around the estimated jump points, the procedure
will not be able to detect jumps that are close to each other or that are quickly reversed.
It should be more apt at detecting long-lasting regime changes. In addition, the procedure
assumes that G (y;) can be represented by a function of few conditioning variables. This
might not be realistic since certain parametric models, such as GARCH, imply that 3?2 is a
function of its infinite past. If such a model is correct, then our non-parametric estimator
may not provide a satisfactory description of the behavior of the conditional variance. If a
few lags are not sufficient to reduce u; to a martingale difference sequence, the asymptotic

theory on which inferences are based will be invalid.



3 Simulation Results

In this section, we will present results from a limited simulation experiment. Specifically, we
want to look at the number of jumps found, both correctly and incorrectly, the sensitivity
of the results to the various choices of the parameters, notably the bandwidth and the lag
length, and the behavior of the estimated jumps.

To make the experiment as realistic as possible, we use the commonly-used GARCH (1,1)

model:

1
vy = p+thie

ht = wt(l—a—ﬁ)—l—a(yt,l—M)Q—i—ﬁht,l.

The values of the parameters are set at those estimated from the data set used in the
empirical application in the next section. Specifically, the data set is made up of 4299 daily
continuously—compounded returns on the Standard and Poors 500 index between January

2nd, 1980 and December 31st, 1996. The data is plotted in figure 1.
K Insert figure 1 here *****

We allow two sets of parameters, one to verify the size of the procedure and one to verify
its power. In particular, the first set of parameters makes w; a constant with no jump and
removes all dynamics in h; (o = 3 = 0) . The second set of parameters allows for two jumps
in wy:

t t
wr = Ag + Aql (?27'1) + Asl (fZU)

The values of the estimated parameters are in table 1.
AR Tnsert table 1 here **##*

With each of these sets of parameter values, the condition for g; to have finite fourth
moment is satisfied. The distribution of &; is taken as N (0,1), and the sample size is

T = 1000. We replicate the experiments 500 times.
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The bandwidth is chosen as b; = co ;T »% where c is the bandwidth constant, 7; is the
estimated standard deviation of variable j, T" is the sample size, and p is the lag length. We
allow for three values of ¢ : 0.8, 1, and 1.2. Moreover, we analyze a data-determined selection
rule by minimizing a variation of the cross-validation criterion:

1 > 1w )
CV (c) = ?;(yf—m;) +?;(yf—ﬁz2t)

where M5, (respectively 5, ) is the right side (respectively left side) estimate of F;_; (7).
This criterion uses only the fit on the second moment of y; to choose the bandwidth. We
could generalize this criterion to include the fit in the first moment as well, but the difference
between the two criteria was usually not very important. The bandwidth constant is allowed
to vary between 0.8 and 1.2 with a step of 0.1. Finally, the one-sided kernel is k, (z) =
z(3—xz)e "1 (z > 0), while the two-sided kernel is Gaussian. All tests are carried out at
the 5% significance level with normality imposed and ten percent of the observations are
deleted at the beginning and end of the sample.

The results for the model with constant variance are presented in table 2 and figure
2. Each column of table 2 presents the frequency distribution of the estimated number
of jumps for each combination of lag length and bandwidth constant. Each cell gives the
fraction of replications where the estimated number of breaks equaled the number in the
left margin. The results are excellent for a small number of lags in that few jumps are
erroneously detected for any value of lag length and bandwidth constant. However, the
table stresses the importance of not overspecifying the information set as this deteriorates
the results dramatically as the information set is expanded. The second row from the bottom
shows that the number of incomplete replications is very small. Two reasons explain an
“Incomplete”: first, after deleting observations around the estimated jumps, either no or too
little data is left for the test to be computed, or secondly, fis too small for all observations.
Note also that cross-validation helps in improving the results at all lags, but in particular

for the larger numbers of lags.

FREEK Tngert table 2 here ¥****



The results for the second data-generating process are presented in table 3 and figures 3
and 4. In this case, the first feature to notice in table 3 is the large number of replications
that were “incomplete” for p > 0. However, with at least one lagged return included in the
conditioning set, the number of jumps found is relatively close to the true one on average.
Note also that cross validation generally reduces the number of incomplete replications.
Figure 3 shows the same information in graphical form with the bandwidth chosen by cross
validation. For p > 1, the distribution is well-centered as the dynamics of the conditional

variance are better captured.
*HHAK Insert table 3 here **#**
K Insert figure 3 here ****

AR Insert figure 4 here **4*

Figure 4 displays a histogram of the estimated location of the jumps with cross-validated
bandwidth. The jumps are located at fractions 0.3626 and 0.7046 of the sample. The second
jump is the dominant one and should be estimated first. The figure supports this assertion,
but the jump at 0.3626 is poorly estimated. There is much mass near the boundary of the
sample space (0.1) which may reflect boundary effects associated with kernel estimation.

Our conclusion from these two small experiments is that the procedure performs reason-
ably well in estimating the number of jumps in a data set. It, however, has a tendency to run
out of observations quickly and to estimate the second (and presumably subsequent) jumps
imprecisely. The use of cross-validation improves the results noticeably and should be used

in practical implementation of the procedure.

4 Empirical Results

In this section, we will apply our jump detection procedure to the series of daily returns on
the S&P 500 index between January 2nd, 1980 and December 31st, 1986 used to calibrate

the simulation exercise above. The data set comprises 4299 observations.
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The detection procedure is implemented in the same way as for the simulation experiment
with up to 3 lags in the information set. The moments F (&}) and E (¢} — 1) are estimated
by using a two-sided kernel over the data remaining after deleting twice the bandwidth on
each side of the currently estimated jump. The use of the two-sided kernel provided more
reliable estimates of these moments.

Table 4 gives the results for 4 lag lengths considered with the bandwidth chosen by our
modified version of cross validation. Full results for other choices of bandwidth are available
upon request from the author. As in the simulation experiment, we allowed the constant to
vary between 0.8 and 1.2 in increments of 0.1. The results are quite interesting in two ways:
first, the procedure did not run out of observations at all lags, and some jump dates seem

to be recurring, in particular late 1982-mid 1983, late 1986, and August 1990.

*FEX* Tnsert table 4 here *¥**F**

The jump in late 1986 occurs a few months before the October 1987 crash and seems

quite natural, as does the August 1990 jump which coincides with Iraq’s invasion of Kuwait.

5 Conclusion

This paper has developed a non-parametric procedure to test for the presence of discontinu-
ities in the conditional variance. Simulation evidence showed that the procedure performs
well in detecting jumps when some exist and will not find many when none exist if the
dynamics are approximately well-specified.

Results from an application to daily stock returns show that some sudden changes in
volatility occurred over the sample period. The findings that the volatility of financial
markets cannot be described as a smooth functions of lagged returns casts doubts on the
practice of fitting GARCH-type models. It remains to be evaluated how much is lost by
neglecting to model this feature of the data. It may very well be that GARCH models still
provide a good first approximation to the behavior of the data. This will be left for future

research efforts.
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A Proofs

A.1 Proof of theorem 1

The proof of this theorem involves getting a local approximation for the process ﬁh, obtaining
a functional central limit theorem for this approximating process with a maximum which is

distributed as postulated in the theorem.

We can infer directly from the proof of theorem 1 in Delgado and Hidalgo (1996) that
Ze — 2 = Op ((pr’l)%) . Thus, let & (v) = A, (zk +

). The key step is to show

(Tov—1)%
that:
(T5") (B0 () =4 (0)) = m, (v) (13)
1 v2 v zZ ~ ~
on C'(—o0, 00) wheren,, (v) ~ N <k(1)(0)2 Am, 27(;205)( k)) with Aig = Ay (2) =241 (2) M (21) -
< Z 2 +
- o1 (v 1 k o T
First, define ¢ (v) = Al (®) =1 - (Tee=)2 . We will show that:
62 ('U) AQ Zk + T
(T3

(Tt (”5 (v) — 5(0)) = 7 (v)

Ay COL (0)v? v2s1(z) vy v2vayH(zk)
~ N 2 fzk) f(zk) ; , — 52
where n (U) N AQ(Zk)k(l)(O)UQ ’ v2v(1)H(zk) v2sg (z6)7(1 with 5j (Zk) Tj+ (Zk)+
2 f(zx) f(zx)

o2 (z,) for j = 1,2 and

G—

H(z) = E[uf (z)us (20)] + E [uy (21) ug ()] + E [ui (2) md (2)]
+FE [ul_ (zx) my (zk)] +F [u;’r (zx) mi (zk)] + F [u; (z1) my (zk)] )
Write (SA] (v) — gj (0) = r; (v) + 0, (TP and g(v) - 5(0) =r(v) = " EU; where

3 (0) = 77 (B () = BF () = m (5B ) 47 () B (0}, B ) = P (s iy ) -

ﬁ;l: (Zk) and IF;E (’U) = f]ﬂ: (zk —+ v 1) _ f'] (Zk) = ]F?: (’U) for Vi, j.

(Tor=1)2

15



By using lemma 7.1 in Robinson (1983) (T%""')r; (v) will have a limiting normal dis-
tribution for fixed v, while by using propositions 1-3 in Appendix B, we obtain E [r; (v)] =
w. The diagonal elements of the covariance matrix are obtained via propositions 4-

8. To obtain the off-diagonal elements, we need to evaluate cov [(TH 1) ry (v1) , (TH 1) 79 (v9)].
Expanding, we obtain:
lim cov [(pr+1) r1(v1), (prH) ra(v2)] = lim (pr;Jrngcov{IP’jr (v1) Py (v2) — PY (v1) Py (v2)

100 T—oo f(zp)

—my (21,) F3 (v2) PY (1)
+my (2x) Py (v1) Fy (v9)
+m3 (2) Py (v1) F3 (v2)
—my (21,) Py (v1) Fy (v2)
—my (z) F{ (01) Py (v2)

F{ (v1) Py (v2)

dim_cov (T 7y (v1), (TV) ra (v2)] = e {E [uf (z) u3 (2)] + E [uf (ze) m3 (z1)]
+E [ug (ze) mi (2)] + E [ur (z1) uy (21)]

FE [uy (z5) my (z1)] + E [ug (z) my (z)]}
Yyvrv2H (z)
f(2)

Application of the Cramer-Wold device completes the proof of the convergence of the

finite-dimensional distributions. Since the two marginal probability measures are shown to

16



be tight in Delgado and Hidalgo (1996), the joint probability measure is also tight (Davidson
(1994), theorem 26.23) and thus (TH"*") (3(1}) —5(0)) = 1 (v) on C(—o0,00) by Whitt
(1970).

and rewrite 8y, (v) — o (0) as

on(v) =04 (0) = 82 (v) — 02(0) — [} ()" =7y ()] + [&] (0) ~ iy (0)’]
= B2(v) =5 (0) =[5 (v) + 28, () iy (v)] + |81 (0)” + 261 (0) 7 (0)]
= 82(v) = 8:(0) = [81 (v) = 81 (0] = 261 (v) [y (v) = s (v)]
=261 (0) [y (0) = i (0)] =261 (v) iy (v) + 261 (0) iy (0)
= 82(v) = 52(0) — [01 (1) = 81 (0)°] = 261 (v) g (v) + 281 0) 5 (0)

where the last line follows from the fact that &, (v) is O, (TH"+1) as proved above and fi; (v) %

py (v)-

Adding and subtracting 26, (0) gty (v) and linearizing the squared terms around 6, (v)
and 6; (0) respectively and 26, (0) p; (v) around 26, (0) 47 (0) gives the representation:

~

61 (v) = 81 (0)] =2 [81 (v) = 81 (0)] my (z0)+o, (T8*)

~ ~ ~ ~ |:/\ ~

61 (V) =64 (0) = 82 (v)—b5 (0)—2A1 (24)

Using the delta method around v = 0 for the function (T6*!)d (v)’ (;5\ (v) — [ (0)) where

=261 (v) — 2u7 (v
d(v) = ( 1(0) = 201 (v) ) gives, as required,
1

(1) B4 (0) = 8. 0)] = m, ()

o Ao (zr)— ~1 2k mIL 2k .
where 1, (v) ~ N (L%, Y, (v)) with T, = ki (0)[ Ao (z) ;A SOLNCD) and >, (v) derived

> = d(@)’var((TbPH)?i(v)—5(0))d(0)
= (—2mt(z) 1) var (1) [F(0) =3 (0)]) <2m1+ W)

1

17



4m{“ (Zk)2U231 (Zk:)V(l) 4m{“ (Zk:)UQW’Q)H(Zk:) n %53 (Zk)V(l)
f(2x) f () f (k)
”U27(1)S (2k)
f(zx)

Let v = arg max [/Sh (v)* — o (0)2} . This objective function can be rewritten as:

B (0)2 =5 (0)2 = [Eh () — bn (0)} "o [Eh (v) — bn (0)] {Eh (0) — 65 (0)] 126, (0) {Eh (v) — bn (0)]

>From above, only the last term will matter asymptotically and (T5"*1) [gh (v)? — 5 (0)2] =
265, (0) (TbP+1) {Sh (v) = 6 (0)} + 0, (1) ~ N (265, (0) Tho?, 485, (0)* 3, (v)) -

The limiting distribution can be rewritten as 26 (0) [[,v* + vU] where U ~ N (O, V(})(igk)) .

This function reaches a maximum at v* = %
1
By the argmax theorem, v < ot By construction, v = (TH 1)? (Zx — z;) so that
L p ,
(ThP=1)2 (2}, — 2z) L N(o 2(0SCr) . Finally, note that the term

" [Beten)—2Butzmd (@)]° [k O] 1)
[82 (z) — 201 (zp) mi (zk)] is a linear approximation of Aj, so that the distribution of

(T07=)

(S

(Zk — 2x) is as postulated by the first part of the theorem.

To prove the second part of the theorem, first note that because © = O,, (TV~!), we have
(T pr) [Ah (Zk) — Ay, (zk)] = 0, (1) so that we can therefore proceed as if the jump points

were known.

The results in Delgado and Hidalgo (1996) and the Cramer-Wold device show that:

~

R oy X Y)sq(z)  Y(oyH (k)
(pr“)% él (&) %1 () LN ’ ; fi?)k) o
Ro (35) — By () o) \ M SR

We can now linearize (prﬂ)% (ﬁh ZK) — Ap (2 ) as before and obtain:
(Tor+)? (Eh (Zx) — A (zk)> = (Tv*h)? {AQ k)}
—2m (z) (THP+)? [El (Ze) — Ay (zk)]

+op ((T071)?)

18



Using the delta method as above gives the desired result:

(TH+1)? (Ah (30) — A (zk)> 4N <0, %Z(:)’“)) .

A.2 Proof of corollary 2

By definition,

H(z) = Eluf (z)us (z)] + E [uy (z1) uy ()] + E [uf (2) m3 (2]
+E [uy (z)my (z)] + E [ug (zx) mi (z)] + E [uy (zx) my (2)]
= A+ Ay + Ay + Ay + As + Ag

Evaluating each term in turn, we obtain:

Ay = 2mi (m) T (z) + b ()7 E ()
Ay = 2my (z)h (%) +h (%) E ()
Ay = 0
A = 0
A5 = 0
Ag = 0
Thus,
H () = 2 [mf () B* (z) + i () b ()] + (B ()7 + 7 (2)?) B ()
while
ol = E[uf ()]
= E[h* (=)
= h*(z)
and
o5 = Eui(a)]]

= FE [ZlcmljE (z6)* h* (z) €2 4 4mi (z,) h* (zk)% e —1)+n" (2)° (7 — 1)2]

= dmt ()2 h* (2) + AmE () Y ()2 B (€)) + b (2) B (e — 1)

19



Putting all these pieces together using the fact that mi (2,) = mi (z) + A1 (2x) lead to the

result:

S (z) = [h* (21)* + h™ ()] E (e} — 1) — 44, () b~ (21)? E (£3) —4A; ()’ h™ (%) W

20



B Auxiliary results

With no loss of generality, we will assume that v > 0 in the following propositions. Letting

v < 0 would change the results by not having terms involving ﬁj (zx). Let g (z) = f (z) g (x),

1
Z—(Zk-&—vj(TbP*l)_f) s N ~ ;
Si (Zk7vj) = Ki b Ki( k) Pj (U) = ‘PJ (zk+ (pr_l)%> N
D+ + T+ + o
P (z1) and F; (v) = f; <zk + (pr 5 ) f] (2), = F;" for Vi, j
Proposition 4 E [P} (v)] = [g) (2x) + A; (2x) fi) (2)] (pr”_l)% + o, (TVP7Y).

Proof. Apply proposition 1 of Delgado and Hidalgo (1996). &

Aj(z)f(zr)k 0)v?2
Proposition 5 E [P; (v)] = ( k);c;bi)_fl)( ) + 01y (2k) (pr:)% + 0, (TP ).

Proof. Apply proposition 2 of Delgado and Hidalgo (1996). B

Proposition 6 E [F; (v)] = fa) (zx) —%— + 0, (Tt"™").

(Thr=1)3

Proof. Apply proposition 3 of Delgado and Hidalgo (1996). &

Proposition 7 cov [P} (v1) Py (v2)] = (T )72 f (21) vlvﬂ(l){mf: (z1) My (21) +
B [uf (z) uy (21)] + E [uy (z) my (20)] + E [uy (z) mi ()] +
op ((Tw+1)?)

Proof. Expand the left-hand side as:

cov [P (1) P5 (v2)] = cov | Pyt (v) = P (0), P (v) — B (0)]

1
= —pr 5 COV [Z S* (Zi,vl)yi,ZSi (Zj,vg)y?]

— pr+1 ZZCOU Z“Ul)yz;S (Zﬁ’UZ)ng']

i J>1

+—(pr+1 5 Z cov [S* (Zs,v1) yi, ST (Zi, v2) ¥ |

B prﬂzZZcov (Ziy o) mi (2) 87 (23, 0) i (Z;)]

i >
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pr+1 7DD cov[SH(Zov)ui (Z),8% (2, v) ug (Z))]

i i
bp+1 23 Z cov [S* (Zi, v1)mi (Z),8% (Z;,v2) s (Z))]
pr+1 ; ; cov | = (Zi,v)ui (Z), ST (Z;,v5) my (Z;)]
+(Tb£1)200v [S™(Zi,v1) mi (Z), ST (Zi,v2) miy (Z5)]
+WCOU [S*(Zi,v1) uy (Z;),S™ (Zi,v2) uy (Z))]
+(fégfﬁcov[Si(zhvgynf(Z»,Si(tha)ui(ZD]
+W00U [S™(Zs,v1) uy (Z;) ,S* (Zi, v2) m3 (i)]

= A+ Ay + A3+ Ay + A5+ Ag+ A7+ Ag

Using lemma 5 in Delgado and Hidalgo (1996), A;, Ag, A7, and Ag are all o, ((pr+1)2>.

On the other hand, using their lemma 7, we obtain:

Ay = H;gyf@wEPﬁ%%w@{%ﬂmww”+%(awﬂ)ﬁ
A5 = @;ﬂﬁ@wEhﬂ%Wﬁ%ﬂWm@+%(@wﬁ2)
4 = (prlH)Qf(zk)E[ﬁ () o] oo + o0 () )
Ao = ! (Bt () ()] e o (797 )

Combining these results completes the proof. B
Proposition 8 cov [P} (v1) P (v2)] = o, ((pr“)*Q)

Proof. Expand the left-hand side as:

1
cov [PTPf] = (pr+1)200v [Z S* (ZZ-,ful)yi,ZS$ (Z,v2) yf]

J

_ pr QZZCOU (Zi,v1) yi, ST (Zj, v2) %2]

i j>1

T
+WCOU [S™ (Zi,v1) ¥4, ST (Zi, v2) 4]
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which is o, ((pr+1)_2> by using lemma 6 from Delgado and Hidalgo (1996) for the first

term and their lemma 8 for the second term. B

Proposition 9 cov [m; () F; (v1) P (v2)] = (pr“)% f () vivayyms () mi (zx)+op ((prﬂ)*Q)
Proof. Direct from Proposition 6 in Delgado and Hidalgo (1996). B

Proposition 10 cov [m; () F; (v1) PT (v2)] = o, ((pr“)_Q)

Proof. Direct from Proposition 7 in Delgado and Hidalgo (1996). B

mi 4 mi 4 Zp JU1LV: —
Proposition 11 cov [mi (z) my (z) FY (v1) Fy (vg)] = = &) 2(;bl;)+i()2k) 220 4o, ((pr“) 2)

Proof. Direct from Proposition 5 in Delgado and Hidalgo (1996). B
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Table 1. Parameter values for simulation experiment
Values estimated from S&P 500 returns,
January 2nd, 1980-December 31st, 1996

DGP 1 DGP 2
1 (x100)  0.0494  0.0463
Ao (x10%)  9.0109  8.1226
Ay (x105) 0 -5.9173

1 - 0.7046
Ay (x10°) 0 0.1829
T - 0.3626
a 0  0.0684
3 0  0.8886
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Table 2. Frequency distribution of estimated number of jumps
hy = 9.0109x 10°

True number of jumps is O

T = 1000, 500 replications

17.4
34.8
46.4
1.4
0.0

0.0

p=0 p=1 p=2 p=3

c=08 1 1.2 cv |[c=08] 1 12| cv | ¢c=08 1 1.2 cv |[c=08] 1 1.2 | cv
M =0| 100.0 | 100.0 100.0 100/0 11.2 392 61.8 69.2 0,0 26 316 B32.6 0.0 0.6 |16.0
1, 0.0 0.0 0.0 0.0 20.8 232 204 230 1.6 20.4 28.0 38.0 0.0 94 322
2| 0.0 00| 00| 0. 28.0/ 23.0 148 6.8 162 554 370 258 250 [724 |50.4

3| 0.0 0.0 0.0 0.0 23.0 126 3.0 1.0 66.8 216 34 3.6 70.4 176 |14

4, 0.0 00| 00| 0. 15.6 2.0 0.C 0.0 15.4 00 00 Qo0 4.6 D.0 0.0

>5| 0.0 00| 00| 0. 14 0.0 0.0 0.0 0.0 00 00 00 0.0 0.0 0.0
Incomplete 0.0 00| 00 0.0 25.0/ 158 11.0 4.0 816 555 338 222 906 6.2 |51.4

Mean 0.000 | 0.000 0.000 0.000 2.152 1.150 0.590 0.396 2.960 1.960 1.122 1.004 2.796 | 2.070 1.37

44.4

2 1.318




Table 3. Frequency distribution of estimated number of jumps

he = @1 —a — B) + 0.0684y; 1 — u)? + 0.88861 1

ot = Ao+ A11(+ = 71) +A21(L > 12)
True number of jumps is 2
T = 1000, 500 replications

p=0 p=1 p=2 p=3
c=08 1 1.2 cv |c=08] 1 12| cv | ¢c=08 1 1.2 cv |[c=08] 1 1.2 | cv

M=0| 530 | 46.6 27.6 286 0.8 12 02 04 0.0 00 00 04 0.0 0.0 0.0 |0.2
1| 13.0 | 23.8) 458 434 8.4 136 208 19.0 2.0 12.2 204 216 1.6 10.2 |33.8 | 324
2| 54 6.4 128 120 13.2f 308 522 538 166 53.8 640 666 33.8 74.6 63.0 | 62.6
3| 6.2 14.8| 13.4 8.2 322 452 268 258 584 336 156 112 59.6 152 | 3.2 | 4.8

4| 10.2 82| 04| 4.8 40.4 9.2 0.0 1.0 23.0 04 00 0.2 5.0 0.0 0.0 0.0

>5| 12.2 02| 0.0| 3.0 5.0 0.0 0.C 0.0 0.0 0,0 00 0.0 0.0 D.0O 0.0 0.0
Incomplete 15.4 | 16.4| 14.2| 7.6 63.00 616 646 668 802 752 766 722 888 832 736 |754

Mean 1.442 | 1.148 1.132 1.262 3.180 2.476 2.056 2,080 3.024 2.222 1.952 1.892 [2.680 | 2.050 1.694 1.720




Table 4. Results from estimation of jumps in conditional variance
S&P 500 returns, January 2nd, 1980-December 31st, 1996

Bandwidth constant chosen by cross-validation

p=0 1 2 3
Date Sizgx107) p-value| Date Sizéx10*) p-valuel Date Sizéx10*) p-value| Date Siz€x10°) p-value
861218 6.878 0.001 860707 32.786 0.000 871127 129.787 0.000 900803 25.152 0.000
(0.4099 (0.3829 (0.4652) (0.6229
890307 -0.452 0.013 900823  -20.709 0.000 911115 -0.038 0.012 830121 -3.358 0.421
(0.5399 (0.6262 (0.6988) (0.1800
830617 2.712 0.536 930216 4.099 0.000 820819 0.184 0.358
(0.2038) (0.7720 (0.1549
821122 -0.066 0.184
(0.1703
C= 1.2 0.9 1.2 1.1




Daily returns

-0.20 -0J5 -=0J0 -=0.05 -=0.00 0.05 0.10

-0.25

Fig. 1. Daily Returns on S&P 500 index
1980-1996
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Fig 2. Estimated number of breaks
Number of breaks = 0
c chosen by CV
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Fig 3. Estimated number of breaks
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Fig. 4. Distribution of estimates of jump locations
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