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RESUME

Nous étudions la relation entre la prime de risque sur lindice S&P 500 et sa
variance conditionnelle. Nous utilisons le modéle SMEGARCH - Semiparametric-Mean
EGARCH - selon lequel la variance conditionnelle suit un processus EGARCH, alors que
la moyenne est une fonction arbitraire de la variance conditionnelle. Pour les rendements
excédentaires mensuels sur lindice S&P 500, la relation que nous trouvons est
non linéaire et non monotone. De plus, nous trouvons beaucoup de persistance dans la
variance conditionnelle ainsi qu'un effet de levier, tel que documenté par plusieurs autres

auteurs.

Mots clés : modeles ARCH, évaluation d'actifs, séries Fourier, noyau, prime de risque

ABSTRACT

We examine the relationship between the risk premium on the S&P 500 index
return and its conditional variance. We use the SMEGARCH - Semiparametric-Mean
EGARCH - model in which the conditional variance process is EGARCH while the
conditional mean is an arbitrary function of the conditional variance. For monthly S&P 500
excess returns, the relationship between the two moments that we uncover is nonlinear
and nonmonotonic. Moreover, we find considerable persistence in the conditional variance
as well as a leverage effect, as documented by others. Moreover, the shape of these

relationships seems to be relatively stable over time.

Key words : ARCH models, asset pricing, backfitting, Fourier series, kernel, risk premium



1 Introduction

Modern asset pricing theories such as Abel (1987, 1998), Cox, Ingersoll, and Ross (1985), Merton (1973),
and Gennotte and Marsh (1988) imply restrictions on the time series properties of expected returns
and conditional variances on market aggregates. These restrictions are generally quite complicated,
depending on utility functions as well as on the process driving asset returns. However, in an influential
paper Merton (1973) obtained very simple restrictions albeit under somewhat drastic assumptions; he

showed in the context of a continuous time partial equilibrium model that

Py = Bl = 150) [ Tima] = yvar((rme — 170) [ Lima] = Y07, (1)

where 7p,, 75, are the returns on the market portfolio and riskless asset respectively, while I,_; is the
market wide information available at time ¢ — 1. The constant ~ is the Arrow—Pratt measure of relative
risk aversion.

The simplicity of the above restrictions and their apparent congruence with the original CAPM re-
strictions (see Sharpe (1964) and Lintner (1965)) has motivated a large number of empirical studies that
test some variant of this restriction. A convenient statistical framework for examining the relationship
between the quantities 1, and o7 in financial discrete time series is the ARCH class of models.! Engle,
Lilien, and Robins (1987) examined the relationship between government bonds of different maturities
using the ARCH-M model in which the errors follow an ARCH(p) process and ju, = p(o?) for some
parametric function y(-). They examined p = v, +v,0; and pu = v, + v, log(c?), finding that the latter
specification provided the better fit. French, Schwert, and Stambaugh (1987) and Nelson (1991) also
examine this relationship using GARCH models.

Gennotte and Marsh (1989) argue that the linear relationship (1) should be regarded as a very
special case. They construct a general equilibrium model of asset returns and derive the equilibrium

relationship
=07 + g(07), (2)
where the form of g(-) depends on preferences and on the parameters of the distribution of asset

returns. If the representative agent has logarithmic utility, then ¢ = 0 and the simple restrictions
of Merton pertain. In addition, Backus, Gregory, and Zin (1989) and Backus and Gregory (1993)

I'The two well-established empirical regularities about financial and macroeconomic time series — serially dependent
conditional second moments and unconditional leptokurtosis — can potentially be explained by this class of models — see
the original papers by Engle (1982) and the survey papers of Bollerslev, Chou, and Kroner (1992) and Bollerslev, Engle,

and Nelson (1994) for references.



provide simulation evidence that, g(-) and hence p(-) could be of arbitrary functional form in general
equilibrium.

Pagan and Hong (1990) argue that the risk premium g, and the conditional variance o2 are highly
nonlinear functions of the past whose form is not captured by standard parametric GARCH-M models.
They estimate E[r,, —rp|l;—1] and var[r,,, —r|l,—1] nonparametrically finding evidence of considerable

nonlinearity. They then estimated 6 from the regression
Tmt — Tt = ﬁ/xt + 60’? + MNys (3)

by OLS and IV methods, finding a negative but insignificant 6. Perron (1999) analyses this approach
using weak instrument asymptotics and finds similar results.

There are a number of drawbacks with this approach. Firstly, the conditional moments are calculated
using a finite conditioning set. This greatly restricts the dynamics for the variance process. In particular,
if the conditional variance is highly persistent, the non-parametric estimator of the conditional variance
will provide a poor approximation as reported by Perron (1998) using simulation. Secondly, linearity
of the relationship between p, and o2 is imposed, and this seems to be somewhat restrictive in view of
earlier findings.

In this paper, we investigate the relationship between the risk premium and the conditional variance
of excess returns on the S&P500 index. We consider a semiparametric specification that differs from
previous treatments. In particular, we choose a parametric form for the variance dynamics (in our case
EGARCH), while allowing the mean to be an unknown function of ¢Z. This method takes account of
the high level of persistence and leverage effect found in stock index return volatility, while at the same
time allowing for an arbitrary functional form to describe the relationship between risk and return at
the market level. We develop two estimation methods for this model: a Fourier series method and a
method based on kernels. The kernel method is based on iterative one-dimensional smoothing and is
similar in this respect to the backfitting method of estimating additive nonparametric regression. We
also suggest a bootstrap algorithm for obtaining confidence intervals. Using these methods, we find
evidence of a nonlinear relationship between the risk premium and the conditional variance.

In the next section we discuss the specification of our model, while in Section 3 we describe how
to obtain point and interval estimates. In Section 4, we present our empirical results. In section 5, we

present the results of a small simulation experiment, while section 6 concludes.



2 A Semiparametric-Mean EGARCH Model

We suppose that the realized risk premium y; is generated as follows
y, = u(o?) + g0y, t=1,2,...,T, (4)

where ¢, is a martingale difference sequences with unit variance, while p(-) is of unknown functional
form, but smooth. We shall also suppose that ¢, is i.i.d., although this is not strictly necessary for some
purposes. The restriction that E[y;|F; 1], where F; 1 = {y; ;}32,, only depends on the past through
o? is quite severe but is a consequence of asset pricing models such as for example Backus and Gregory
(1993) and Gennotte and Marsh (1988). In any case, it is possible to generalize this formulation in
a number of directions. It is straightforward to incorporate fixed explanatory variables, lagged o2, or
lagged y; either as linear regressors or inside the unknown function p(-). More complicated dynamics
for ¢, such as an ARMA(p, ¢) model, and a multivariate extension can also be accommodated.

We model the conditional variance using the Exponential GARCH model considered by Nelson
(1991):

P q
h, = 1og(0t2) =a+ Z b; log(a?,j) + Z ChVt—k» (5)
k=1

Jj=1

! . o . . .
where ¢, = (c1x, cox) and vy = (v14, Vo)’ is a vector of mean zero i.i.d. innovations:

Vit = €&

Vo = |5t| -F |5t| ) (6)

which are identical to those in Nelson (1991).

Specifying a time series model for the log of the conditional variance (EGARCH) has a number of
advantages over specifying the model for the level of the conditional variance (GARCH). In GARCH
models, it is necessary to impose inequality constraints on the parameters during estimation to ensure
that the variance process remains non-negative. The constraints typically employed exclude cyclical
behavior for the variance.? If an intercept is included, a lower bound is imposed on the conditional
variance process. This lower bound is estimated from the entire sample and may distort some of the
properties of the fitted model. In particular, the standardized residuals may appear to have too much
mass near zero — see for example Whistler (1988).

GARCH models essentially specify the behavior of the square of the data. In this case a few large

observations, such as those between 1929-1933, can dominate the sample; the estimated parameters are

2Nelson and Cao (1992) establish a much weaker set of inequality constraints than Bollerslev (1986).
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determined primarily by these massive observations. In EGARCH models, one is essentially modelling
the log of the square of the data, and hence large observations get substantially down-weighted.®> A
more general class of specifications is considered in Higgins and Bera (1992).

The usual choice of innovations in the GARCH model is €2 ;07 |, which are not i.i.d.; this results
in a number of conceptual anomalies. Nelson (1990) shows that the conditional moments may explode
even when the process is strictly stationary and ergodic — i.e., the usual unit root condition does
not delineate stationarity from nonstationarity; see also Lumsdaine (1996) and Lee and Hansen (1994)
on this point. In addition, the driftless IGARCH(1,1) process collapses to zero almost surely. With
i.i.d. innovations as in Nelson (1991) these conundrums do not occur, i.e., strong stationarity and weak
stationarity coincide.

This formulation allows both the sign and the level of £;,_ to affect 0',52 — good news and bad news
can have different effects on volatility, hence the so-called leverage effect. The parameters ¢y and cop
control the relative importance of the symmetric versus asymmetric effects. A number of economic
arguments have been advanced to support this specification. For example, Black (1976) and Christie
(1982) suggest that since downside risk to the owners of a company is limited by bankruptcy laws,
owners have an incentive to adopt more risky investment when the value of the firm is low. Therefore,
return volatility will be negatively correlated with returns. Evidence for this hypothesis can be found
in Nelson (1991) for daily data and in Braun, Nelson, and Sunier (1991) for monthly data.

A number of authors, e.g., Nelson (1991), have found that standardized residuals from estimated
GARCH models are leptokurtic relative to the normal, see also Engle and Gonzalez—Rivera (1991). We
therefore assume that €, has a distribution within the exponential power family*

_vexp (—;|5/)\|”) '

= AT A= 20211 /) /T(3/v)]) V2, (7)

where I" is the gamma function. With this density, we obtain that F |¢,| = %ﬂl (Hamilton, 1994,
p. 669).

Under the full specification (4-7), Elexp(dv,)] < oo for any d provided v > 1 and |u(z)| < c|z|
for some ¢ and all x. Therefore, the unconditional variance of 1; exists provided the autoregressive
polynomial b(L) = 1+ by L+ - - -+ b, LP has roots outside the unit circle. In this case, o7 and y; are both

weakly and strongly stationary.

3This is essentially the motivation Schwert (1989) gives for modeling the standard deviation. However, in EGARCH

there is the converse problem that observations close to zero receive considerable weight in the estimation.
4The GED family of errors includes the normal, uniform and Laplace as special cases. The distribution is symimetric

about zero for all v, and has finite second moments for v > 1.
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The main difference between this model and previous treatments is that we do not restrict the
functional form of p(-) a priori. This has a number of implications both for estimation and testing. In
particular, a simple consistent estimator of () is difficult to obtain and would appear to depend on
first obtaining consistent estimates of the parameters of the variance process. On the other hand, to
estimate these parameters we need to have a good estimate of u(-). In the next section we propose a

solution to this problem.

3 Estimation and inference

Estimation of the unknown parameters by maximum likelihood when x(-) is known apart from a finite
number of parameters, say 7, is considered in Engle, Lilien, and Robins (1987) and Nelson (1991). In
this case, let ¢ = (a,by,...,bp, c},...,c, v) = (¢',v)" and T be the vector of unknown mean parameters.
Then €4(¢, 7) and h¢(¢, 7) can be built up recursively given initial conditions, and the conditional log-

likelihood function is
T T 1T
br(p,7) =Y l(d,7) =D log(f(eio, 7);v) — 5 > hi(e,7), (8)
t=1 t=1 t=1

The likelihood function can be maximized with respect to ¢, 7 using the BHHH algorithm, viz.

Pl ol . T  1lr
7 !
T T t=1 t=1
where A7 is a variable step length chosen to maximize the log likelihood function in the given direction,
and the score functions étqﬁ are evaluated at ¢, 711

We propose constructing estimates of ¢ and p(+) in the semiparametric model by analogous methods.

We estimate p using two main approaches: the first one consists of treating the 7' x 1 vector

o= (pys pogs - oo, pop)

as unknown parameters and estimating them through a kernel smoothing method inside the optimization
routine. The second approach is to parametrize p(-) in a flexible way. The basis we will use is the Fourier
Flexible Form of Gallant (1981). We describe the estimation and the construction of confidence intervals

for each method in turn.



3.1 Kernel Estimation

The first method estimates p by a smoothing procedure based on kernels [see Hérdle (1990) and Hardle
and Linton (1994) for a discussion of kernel nonparametric regression estimation]. In many other
semiparametric problems one can use a profile likelihood method as in Klein and Spady (1994) in which
the nonparametric function is estimated for each given parameter value and then the parameters are
chosen to minimize some criterion function that includes the profiled nonparametric estimator. For

example, consider the following i.i.d. problem, which is similar to ours. We observe {y;, ;},, where

yi = (o})+ o (10)

0? = g0,z;), i=1,...,n,

where ¢(0, -) is a known function and ¢; are i.i.d. with mean zero and variance one. For each 6, we can

write 00
R D K (%) Yj
N(%(S) = n s—g(0,2;) ) (11)
S K ()

where (7)) is a bandwidth parameter such that 6(7)) — 0 as T — oo, while K is a bounded kernel
satisfying [ K (u)du = 1, for example the normal density, and define the semiparametric profile likelihood

L Flal6.7))?

26 = —— 10 (0, z;)

i=1

We can take the minimizer of | (), 5, as an estimate of 6. This problem has not been explicitly treated
before in the literature, but is similar to many others. We expect that 6 is root-n consistent and
asymptotically normal. However, there is a cost to not knowing the function p, i.e., the semiparametric
information bound is generally lower than the information bound when p is finitely parameterized.

In the case of our time series model, we can’t define the corresponding quantity ﬁ¢(af) so easily,
since 07 depends on lagged €’s, which in turn depend on lagged y’s. Therefore, we need an entire vector
of p's to construct ﬁ¢(af).5 We are instead led to iterative updating of both the finite dimensional

parameters and the function p, i.e., our profiled likelihood is the limit of a sequence of operations. Our

5 An alternative method that works for (10) is to compute the residuals directly u; = y; — E (yilx;), where E (yilxs)
is some nonparametric estimate of E(y;|z;), and then to estimate the conditional variance by maximum likelihood or
least squares based on these residuals. Unfortunately, in the time series model, the relevant information set here is the
entire infinite past, so it is hard to make use of the conditional moments Ey;|F;_1] directly. One could argue — as do

Pagan and Hong (1990) — that consistent estimates of E[y:|F;_1] could be obtained using nonparametric regression with
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procedure first requires picking starting values for p and ¢. We then define a modified version of the
Newton—Raphson algorithm to update our estimates of ¢ = (¢',v). We then update our estimates of
1 using kernel estimates based on the previous iterations filtered log variances. Our method has some
similarity to the ‘backfitting’ methodology for estimating additive nonparametric regression, see Hastie
and Tibshirani (1990), in that it amounts to iterative one-dimensional smoothing operations. In our
case, we combine parametric and nonparametric estimation in each iteration.

For convenience we describe the algorithm for the case p = 1 and ¢ = 1. We shall also smooth on
the log of variance h, instead of the variance itself. Since the logarithm is a monotonic transformation,

the two approaches are equivalent.

3.1.1 Simultaneous Estimation of ¢ and u()

We use the following algorithm:

1. Choose starting values for ¢!'! and {pNT .

2. Given {hk‘”}le, calculate

h[v‘fl] _h[v‘fl]
—t S
Zs;ét K <

5 > Ys

ot t=1,2, T (12)
s K <tT>

where 6(7') is a bandwidth parameter such that 6(7') — 0 as " — oo, while K is a bounded kernel
satisfying [ K(u)du = 1.

e

3. Given initial values hg](gb) and e([)r]((b), define recursively for any parameter value ¢

)

T

R = a+onl + el + e (‘&@1‘ - E

G
SR s i Y o

exp(hy)’
Then for any ¢ construct EI[«;T] (¢) = 4o HM), the period ¢ contribution to the 7** pseudo likelihood

function, where 4 = (i1 . iy

a truncated information set }—tli (1T ) = {ye—1,...,y¢—p}, where P(T) = oo at a very slow rate. This estimate could then
be used to obtain consistent estimates of the parameters of h;. This is not a particularly appealing procedure from a

practical point of view because of the high dimension.



4. Calculate
T

o= g[S i S 19
t=1

t=1

where 425] is the vector of partial derivatives of E,[f](gb) with respect to ¢ evaluated at gb[r].

5. Repeat until convergence. We define convergence in terms of the relative gradient and the change

in the nonparametric estimate, i.e.,

Zthl étfﬁk ’ ¢k
(o)

1 T
7??

=1

H[TH] — H[T]

7] [7]

} <, (14)

max {mkax

for some small prespecified €. Denote the resulting estimates by (Aé and fi.

We are unable to prove convergence of the above algorithm, although in practice it seems to work
reasonably well and to give similar answers for a range of starting values.® An alternative implementation
is to iterate to convergence on the computation of ¢ in (4) for each ,LL,ET], and then to update ,LL,[:T] as in
step (2) above. The stopping rule (14) was arrived at after some experimentation. It is desirable to
ensure that the entire parameter vector (¢, i) is convergent. In practice, this methods seems to work
quite well.

No asymptotic theory is available for gY); however, for comparison, no theory is available for maximum
likelihood estimation of parametric EGARCH models without mean effects — see Nelson (1991). The
only cases where a solid asymptotic theory that relies on primitive conditions for members of the
GARCH class of models exists are ARCH models, see Weiss (1986), and the GARCH(1,1) model, see
Lumsdaine (1996) and Lee and Hansen (1994). For any other specification in the GARCH class, the
asymptotic theory that is used in practice is not known to be valid.

If hy were observed, a kernel estimate of p(-) as in (12) would be consistent and asymptotically
normal under appropriate conditions;’ this argument can be extended to the case where h; is replaced
by a consistent parametric estimate. Indeed, the asymptotic distribution of nonparametric estimates is
usually independent of any preliminary parametric estimations. In practice, the parameters of h; appear

to be quite robust to different parametric specifications of the mean equation. The filtered estimate of

6Note that convergence of the backfitting algorithmm has only been shown in special cases. However, even in the absence

of convergence proofs, as in the application to generalized additive models, the method seems to work well.
"The process h; is weakly dependent — it is an ARMA process. Therefore, the results of Robinson (1983) can be

applied to establish consistency, provided §(7") = 0 at an appropriate rate.
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h; based on, for example, ,u,[fo] = T T 4, should be close to the true h; and should provide good
starting values. As in the parametric case, additional iterations should improve the performance of the
estimated parameters and function. We therefore expect i, to be consistent. As regards éﬁ, we expect
it to be v/T consistent and to have a limiting normal distribution with the variance including some
component arising from the estimation of p.

Choice of bandwidth is a nontrivial problem here, since it may be necessary to undersmooth our
estimate of u(-) to obtain good estimates of ¢ as has been pointed out by Robinson (1988) for example.

We adopt a simple, second best, approach to this, see below.

3.2 Fourier Series Estimation

The second approach is to parametrize the mean equation using a flexible functional form. By letting
the number of terms grow with sample size and with a suitable choice of basis functions, this method
can approximate arbitrary functions. This is an example of sieve estimation, but for a given sample
size, it reduces to a parametric method with a finite number of parameters.

The basis we will use is the flexible Fourier form of Gallant (1981) which adds sine and cosine terms
to a quadratic function. Because it uses trigonometric terms, it is convenient for the data to lie in the

[0, 27 interval. To do so, we recenter and rescale the estimates of h; and define a new variable

2
h) W7

where h and h are scalars such that h is less than min (h;) and h is greater than max (h;). Then the

h: = (ht_

Fourier approximation is

M M
w(hi) =~vo+ 710, + 72h:2 + ij sin (7hy) + Zgoj cos (jhy) . (15)
j=1 Jj=1

The number of terms to estimate is p + 2q + 2M + 4.

3.3 Constructing Standard Errors

The remaining problem is the construction of standard errors for the parameter estimates and the
risk premium. In the former case, we report analytical and bootstrap standard errors. The analytical

standard errors are obtained by taking the outer product of the gradient:

T -1
ses = sqrt (diag ([Z éwlﬁ;(ﬁ] )) :
i=1

9



for both the kernel and series estimators. These standard errors should understate the true uncertainty

associated with the parameter estimates since they neglect the loss of efficiency associated with the

non-parametric estimation of u () in the case of the kernel and the sieve nature of the estimation of

() in the case of the series. However, these standard errors are quite easy to compute.

The alternative method for constructing standard errors is the bootstrap (see Hirdle (1990)). We

give an algorithm for calculating such confidence intervals for p = ¢ = 1 in the case of the kernel.

3.3.1 Bootstrap Standard Errors

1.

Given estimates u, @, hy(@, 1), and & = &,(@, ), calculate the recentered residuals &; = &; — &,

where 2 = T-' YT 2,
Draw a random sample {&}}_, from the empirical distribution of Z.

Given starting values h{j and &}, and {h;}L;, define recursively

By =+ bhy_y + éneiy + e [ef| - B

E3
51&—1“ .

and
yi = p(hyi{hs}is)) + €fot,

with the appropriate choice of p (-) . In the case of the kernel estimator, some auxiliary bandwidth
parameter & that oversmoothes the data should be chosen [see Hiirdle (1990) for a discussion of

this|, where

Zs;étK (%) Ys
s {hs Z: ,0) = .
(@5 {hs}s_1,0) S K (I_(gh5>

. Given {y;}]_; calculate parameter estimates (}* using the above quasi-Newton procedure.

. Repeat steps 2—4 m times. The standard errors are estimated from the sample standard deviation

of the bootstrap parameter estimates éﬁ*

This method of obtaining standard errors is time-consuming for large datasets since it relies on

simulation. However, it should reflect fully the loss of precision associated with estimating pu(-).

The second problem, the construction of confidence intervals for ji can be approached in two ways:

we can think of standard errors that are conditional on a value of h; [and therefore allows us to look at

the issue of the shape of the risk premium], and those that are conditional on all observables and thus

10



allow us to run real-time experiments, and would be of interest to a decision maker. The second type
is more difficult to construct as h; depends on the infinite past, hence these standard errors have to be
built up recursively.

On the other hand, computing standard errors conditional on the value of h; is rather simple. For

the kernel method, the variance of fi, is given by Hardle (1990):

ia? [k (u)* du
né  f(h)

where f (h;) is the ergodic density of h; evaluated at h;. This quantity can be estimated by replacing
o2 and f(h;) by estimates 57 and f (k) respectively.
For the series approximation, we define 74 as the estimated mean parameters and H; be the vector

of slopes, i.e., du/ (97|3. For instance, for the Fourier series

1
hi
hi?
cos (h})
—sin (h})

M cos (h})
—M sin (h})

Then,
var [u (he) |h] = Hivar () Hy,

where var () is the appropriate submatrix of the covariance matrix of (Aﬁ obtained by either the outer

product of gradient or the bootstrap as described above.

4 Empirical Results

We examine the monthly risk premium on the excess returns on the S&P500 index — the total monthly
return on the index minus the monthly returns on T-bills— over the period January 1926 to December
1997. The data is obtained from the Center for Research on Security Prices (CRSP); it is plotted in
figure 1. In Table 1 below we report sample cumulants for the raw data (multiplied by 100) over various
subperiods: FP (1926-1997), I (1926-1945), 1T (1946-1973), and III (1973-1997).

11



*** TABLE 1 HERE ***

The table reveals large differences in cumulants, in particular between the first period and the rest
of the sample. This sub-period has much higher variance, positive skewness, and extremely fat tails
relative to the rest of the sample. The second subperiod appears very calm with lowest variance and
lowest fourth-order cumulant.

For the series estimator, values of the tuning parameters of up to 3 were considered with the models
selected by the Akaike criterion (AIC) which maximizes 2In L (w) — 2k where k is the number of
parameters in the model and the Bayesian criterion (BIC) which maximizes 2In L (w) — kIn7T. Both
criteria gave similar results: in both cases, p = 1 and ¢ = 2 are selected, but the AIC chooses M = 2,
while BIC chooses M = 1. We report the results for M = 1.

Because both approaches selected the same values of p and g, we chose these values when estimating
the model using the kernel approach. Results for other choices of p and ¢ are available from the authors
upon request. It is difficult to compare the fit of the model estimated with the kernel for various values
of p and ¢ as the models are then non-nested. To simplify computations, the bandwidth was selected

according to Silverman’s rule of thumb:

SH

§ =1.060 (h) T73,

where o (h;) is the standard deviation of h;, and updated at each iteration to reflect the new estimates
of h;. We set the values of h and h at -10 and -2 respectively based on the results from the kernel
estimation which does not impose such restrictions. The results from the estimation using the two

methods considered here and their associated standard errors (ses(¢)) are presented in table 2.
*** TABLE 2 HERE ***

Our parameter estimates appear quite robust to the method chosen to do the estimation. They are
also consistent with many other studies in the area. In particular, the estimate of b;, which measures
the degree of persistence, is high (above 0.9) and the estimate of the leverage effect ¢1; is strongly
negative. There is some disagreement over the leverage effect of ,_5, but this parameter is much less
precisely estimated. Finally, the estimated value of v is around 1.6 which is again consistent with
previous findings. The distribution we find has fatter tails than the normal which is a special case
with v = 2. Note that the bootstrap standard errors tend to be larger by up to 50% than the analytic

standard errors.
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The last row of table 2 provides results of a likelihood ratio test for the significance of the coefficients
on the nonlinear terms in the Fourier series. The results clearly show that linearity is strongly rejected,
even at a level of significance of 1%. The individual effects, with the exception of the intercept, are also
significant.

The risk premium estimated using the kernel method is graphed in figure 2 as a function of h;.
Confidence intervals at the 95% level constructed using the pointwise kernel confidence intervals are
also provided. The figures clearly reveal a non-monotonic relation between h; and ;. This is consistent
with the findings of Backus and Gregory (1993) that in an artificial economy, the risk premium may
have virtually any shape. The evolution of the estimated risk premium and conditional variance are
presented in figures 3 and 4. These figures clearly reveal the episodes of high volatility: the Great
Depression, World War 11, the first oil shock, and the period around the crash of 1987.

Figure 5 provides the shape of the risk premium estimated using the Fourier series. The graph
also includes the analytical 95% confidence intervals conditional on h;. Again, the estimated shape is
nonlinear.

The two smoothing methods both have advantages and disadvantages. The kernel estimate appears
rather wiggly in the end points where there is not much data. The Fourier series method on the
other hand is very smooth and gives the appearance of being precisely estimated. However, there is a
pronounced upward slope at the high end, which seems at odds with the kernel method finding. This
end-trend is quite symptomatic of these polynomial-based methods; we view it with some skepticism.
We thus redraw the two estimates over the narrower range where most of the data lie in Figure 6. The
methods agree quite closely on this subrange - there is a hump shape, which is first concave and then
convex.

Finally, we provide some diagnostics on the standardized residuals &, = (y; — f1,) /0. We just report
the results for the kernel, but similar results have been obtained for the series approach. The plots of
the autocorrelogram of both the residuals and their squares indicates that they are close to white noise:
there are 8 significant autocorrelation coefficients at the 5% level among the first 100 lags in the levels
and 9 significant autocorrelations in the squares. Moreover, apart from a little skewness, the density of

the standardized residuals is close to that of the generalized error distribution estimated by the data.
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4.1 Subsample estimation

In order to see how robust our estimates are, we re-estimated the model over three sub-periods: 1926-
1945, 1946-1973, and 1964-1997 using the kernel method. The results are presented in table 3 below

(with analytical standard errors in parentheses).
**% TABLE 3 HERE ***

The results show quite a bit of instability in the point estimates. Nevertheless, the shape of the
risk premium is relatively stable over time. Figures 11-13 show the estimated risk premium using the
same scale as in figures 2 and 5. Because the last two subsamples were characterized by lower volatility
than the beginning of the sample, the estimated log-volatility is concentrated towards the left of the
graphs for those two periods. However, we clearly see the same overall non-monotonic shape of the risk
premium for those values of the log variance as with the full sample. The first subsample stands out as

having higher volatility, but the estimated risk premium has a similar shape.

5 Simulation

In order to appreciate the performance of our kernel procedure in estimating the risk premium in

financial data, we generated data using the model we estimated. We thus generated data according to
hy = —0.17540.973h; 1 —0.234¢; 1+0.013 [|e; 1| — F et 1]] +0.193e;_o+0.246 [le; 1| — E|er1]] (17)

with €, drawn from a generalized error distribution with v = 1.578. The errors were generated using the
algorithm of Tadikamalla (1980) based on rejection. For each value of h; generated, we then associate
to it the value of the estimated risk premium with a value of the log variance that is closest to h;. The
sample size was the same as ours, 864, and we repeated this experiment 100 times. The estimation was
carried out in the same way as the empirical analysis above with starting values for the risk premium
at the mean of the generated data and using the Gaussian kernel. The algorithm was started at the

true value of the parameters. The results from the experiment are presented in table 4.
*#% TABLE 4 HERE ***

The results are encouraging: despite the small number of replications, all the sample means are
within one standard deviation of the true value with the exception of 7 which appears to be quite
imprecisely estimated. The estimated risk premium is underestimated and slightly more volatile than

the true risk premium used to generate the data.

14



6 Conclusions

We have found a highly nonlinear relationship between the first two moments of index returns as
suggested by Backus and Gregory (1993) and Gennotte and Marsh (1988). In particular, the risk
premium is nonmonotonic. This result appears to be quite robust to the estimation method and the
tuning parameters selected. Moreover, the shape of the risk-return relation seems to be robust over
time. These results suggest that previous parametric GARCH-M models such as Engle, Lilien, and
Robins (1987) are misleading about the underlying relationship between risk and return at the market

level.
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Tables and Figures

Table 1
Raw Data by Sub Period
FP I II I11
1 0.357 0.409  0.346 0.326
o? 32.205 72.783 14.079  19.793
K3 80.413 342.114 -18.602 -28.469
ke 10174.626 28550.860 16.069 988.330
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Table 2

Estimates
Kernel Fourier
a —0.167 —0.451
(0.062)  (0.099) (0.092)  (0.134)
by 0.973 0.927
(0.010)  (0.016) (0.015)  (0.022)
c11 —0.234 —0.306
(0.053)  (0.065) (0.047) (0.054)
C12 0.013 —0.096
(0.083)  (0.063)  (0.068) (0.070)
Ca21 0.193 0.212
(0.046)  (0.090) (0.045)  (0.059)
C92 0.246 0.367
(0.089)  (0.087) (0.079)  (0.077)
v 1.578 1.590
(0.102)  (0.133) (0.110)  (0.142)
"o i (0.08(()))' 1 2(%.150)
v, - —0.295
(0.040)  (0.131)
T2 ) (0.009)’06(3.027)
3 ) (o.osg)' 14(3.067)
- —0.143
T4 (0.018)  (0.060)
) 0.207 -
{= 1427.02 1445.63
Linearity test
- 16.744
Hy:v,=0,i>1 (0.0008)

(p—value)
Note: The numbers in parentheses are analytical and bootstrap standard errors respectively.
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Table 3
Sub-period estimates
1926-1945 1946-1973 1974-1997

a —0.181 —3.120 —0.531
(0.115) (2.145) (0.503)
by 0.968 0.524 0.916
(0.021) (0.329) (0.079)
c11 —0.305 —0.187 —0.353
(0.127) (0.080) (0.103)
C12 0.006 —0.061 0.065
(0.178) (0.135) (0.185)
Co1 0.168 —0.081 0.298
(0.105) (0.144) (0.107)
C29 0.220 0.122 0.128
(0.217) (0.146) (0.208)
v 1.306 1.979 1.686
(0.176) (0.266) (0.208)
0 0.321 0.118 0.165
(= 305.62 625.95 502.70
Table 4

Simulation results

True Mean estimate Standard deviation

a -0.167 -0.205 0.107

b1 0.973 0.965 0.017

c11 -0.234 -0.200 0.056
12 0.013 0.036 0.076
Ca1 0.193 0.158 0.054
C22 0.246 0.180 0.085

v 1.578 1.998 0.234

o 0.207 0.163 0.035
mean(p) 0.004 0.001 0.002
std(u)  0.009 0.013 0.003
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Figure 2. Smooth kernel estimate of risk premium
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Figure 4. Estimated conditional variance
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Figure 5. Fourier series estimate of risk premium
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Figure 6. Kernel and Fourier series estimate of risk premium
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Figure 7. Standardized residuals
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Figure 8. Autocorrelogram of standardized residuals
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Figure 9. Autocorrelogram of sguared standardized residuals
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Figure 10. Density of standardized residuals vs. GED
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Figure 11. Smooth kernel estimate of risk premium
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Figure 12. Smooth kernel estimate of risk premium
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Figure 13. Smooth kernel estimate of risk premium
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