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RÉSUMÉ

Un modèle d'enchère au premier prix est formulé où les acheteurs se rencontrent

d'une façon répétée en tirant des valeurs privées à chaque période de manière

indépendante. Notre attention se porte sur les équilibres collusifs symétriques lorsque les

transferts entre joueurs ne sont pas permis. Comme dans l'approche introduite par Abreu,

Pearce et Stacchetti, les punitions sont endogénisées et nous les utilisons pour construire

les stratégies de collusion. Cette analyse diffère d'une analyse standard des jeux répétés

à cause de la présence d'information incomplète. Les stratégies collusives optimales sont

en général inefficaces et possèdent une nature "bang-bang" qui implique la stabilité des

cartels. Les réponses du vendeur sont également étudiées. Dans ce contexte de jeu

répété, de nouveaux résultats qui ne sont pas présents dans un contexte statique

apparaissent.

Mots clés : enchères, collusion, jeux répétés

ABSTRACT

A model of first price sealed bid auctions is developed where bidders meet

repeatedly while independently drawing private valuations in each period. Attention is

focused on symmetric collusive bidding equilibria when side-payments are not allowed.

Via an approach introduced by Abreu, Pearce and Stacchetti, endogenous punishments

are characterized and used in the construction of optimal collusive bidding strategies. This

analysis differs from usual repeated game treatments due to the presence of incomplete

information. Optimal collusive bidding strategies are generally inefficient and have a bang-

bang nature which implies that defection is never observed. Auctioneer responses are also

studied, which in this explicitly dynamic setting give rise to insights not apparent in a static

formulation.

Key words : auctions, collusion, repeated games
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1 Introduction

It is well recognized that auctions account for a signi�cant share of current eco-

nomic activity. From a pragmatic point of view, this is possibly why auctions

have been the focus of so much research e�ort for nearly forty years. With few

exceptions, the literature has maintained the assumption that agents participate

in a one shot game: an auction is held and the participants part company never

to meet again. This is the point of departure for this work, and is justi�ed by

the fact that in most auctions there is a core of long run bidders1. The repeated

nature of such an auction immediately suggests the possibility of bidder collusion.

Recently there has been some progress made into understanding the behavior of

rational agents colluding in auctions, but this work has abstracted away from a

repeated game analysis. For internal consistency this is reason enough to study

collusion in an explicitly repeated environment. Studying collusion in auctions in

a repeated setting is pertinent for several additional reasons. Firstly, the predic-

tions generated by a static model do not always carry over to a dynamic model (in

a way to be made clear below). Secondly, a dynamic model yields richer results

than its static counterpart. And thirdly, an entire class of results on auctioneer

behavior emerges which does not arise in a static model.

One of the earliest examinations of collusion in auctions was done by Co-

manor & Schankerman (1976) who examined rotating bid schemes (the most fa-

mous case-study is perhaps the \phases-of-the-moon scheme" detailed by Smith

(1961)). They also studied a paradox in auction behavior: that of identical bids

submitted by bidders2. McAfee & McMillan (1992) were able to resolve this para-

dox by showing that if bidders were unable to e�ectuate sidepayments amongst

themselves, perhaps because of a \paper trail" which makes costly detection very

likely, then the optimal response of a cartel would be for every bidder to bid the

reserve price and let the auctioneer act as a randomization device. Of course if

the auctioneer were to award the good in a predetermined way, say to the bidder
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who's name was �rst alphabetically, then a little bit more coordination by the ring

is required. The key insight here is that a ring must renounce e�ciency in order

to overcome incentive compatibility problems brought about by the existence of

privately held information. Though they only examined a static model, McAfee

and McMillan assumed the existence of some sort of trigger-strategy which makes

adherence to the cartel more pro�table than defection.

When the restriction on sidepayments is lifted, the analysis changes rather

drastically. As Graham&Marshall (1987) show, second price and English auctions

are susceptible to a mechanism called a pre-auction knockout which not only

succeeds in winning the object at the reserve price (when the cartel is all inclusive),

but always awards the object to a buyer who values it the most. E�ciency is

retained. In their paper, McAfee & McMillan (1992) also study \strong cartels".

These cartels can e�ectuate transfers amongst themselves and can exclude non

serious bidders. They also propose a mechanism which is e�cient and wins the

item at the reserve price. Again, these models abstract away from repeated play

which must be used to justify obedience to such mechanisms.

Friedman (1971) was the �rst to formalize the \folk" theorem showing that

repeated partnerships enable players to coordinate to equilibria which Pareto dom-

inate any single stage Nash equilibrium. Usual analysis has abstracted away from

any uncertainty, but if a model of auctions is to be studied one must keep in mind

that uncertainty is the raison d'être for auctions. In fact it is this incomplete in-

formation in an auction which changes the analysis of repeated play, since players

(in a sense) play a di�erent game in each period. The perfect information as-

sumption has been relaxed by Green & Porter (1984) as well as by Abreu, Pearce

& Stacchetti (1986) and Abreu, Pearce & Stacchetti (1990), mainly through the

study of Cournot oligopoly where each period's price gives an imperfect signal

about (private information) �rm-speci�c quantities. The uncertainty in auctions

is somewhat di�erent from the uncertainty described above. In Cournot compe-
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tition an \auction-like" uncertainty would be more akin to �rms holding private

information about stochastic costs, as opposed to the demand side uncertainty

studied by Green and Porter and Abreu, Pearce and Stacchetti. 3 Nevertheless,

the approach introduced by Abreu, Pearce and Stacchetti proves to be particularly

useful in studying repeated auctions.

An immediate outcome of studying explicitly repeated auctions is that one

can easily give an example of a series of auctions where McAfee and McMillan's

strategy of bidding the reserve price is not supportable. Thus, added to the

familiar incentive compatibility constraints is a new dynamic \trigger" constraint

(or in the terminology used by Abreu, Pearce and Stacchetti, \admissibility").

Roughly, the intuition is that a bidder can value an object very highly today{

so much so that he is prepared to face any credible punishment in return for

possessing the item today. The ine�ciency of the McAfee and McMillan \at"

bidding function is the driving force behind this behavior. Section 2 gives a simple

example of this phenomenon. The obvious question is that if for certain series of

auctions bidding the reserve price is not an admissible scheme, then what is?

and what is the optimal scheme? Furthermore, what can be said about cartel

behavior across time: can incomplete information cause some kind of instability

in the cartel? Does the role of the auctioneer di�er from that of a static model

where his main weapon in combatting collusion is the reserve price? This paper,

therefore, is an attempt to answer the above questions.

Section 3 presents the model to be studied through a series of assumptions.

Section 4 shows that the method of Abreu, Pearce and Stacchetti can be used

in auction games. Some of the major points of the paper are stated in section 5

where optimal collusive bidder behavior is studied. The role of the auctioneer is

presented in section 6 where several implications arise only due to the repeated

nature of the scenario. Section 7 briey concludes. Many of the proofs can be

found in the appendix.
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2 An Example

To motivate the following sections, this section presents a simple example. Con-

sider two bidders who meet repeatedly in a �rst price sealed bid auction, discount-

ing future earnings with a common discount rate � 2 (0; 1), drawing independent

valuations, denoted v, each period from a uniform distribution over [0; 1]. Follow-

ing McAfee and McMillan, suppose they decide to use a form of tacit collusion

to increase their expected pro�ts where each bids zero (the reserve price) in each

period. The auctioneer is assumed to randomize equally in the case of a draw.

Suppose that this collusion speci�es that each player use Nash strategies forever if

a winning bid above zero is ever observed. In order for any bidder type to prefer

colluding it is necessary and su�cient that the highest valuation type prefer to

adhere to cartel rules:

1

2
+

�

1� �

1

4
� 1 +

�

1� �

Z 1

0

v(1� v)dv:

The su�ciency follows from the fact that the incentive to cheat for a player with

valuation one is greater than for any other valuation. The left hand side repre-

sents the gains to obeying the collusive rule for an agent with valuation one, and

the right hand side represents the gains to defecting from the collusive rule for

an agent with valuation one. However, for any � < 6=7 this collusive rule will

eventually provoke defection (the admissibility constraint is not satis�ed). The

ine�ciency of the collusive rule drives a high valuation agent to prefer cheating.

The obvious question becomes what is the form of collusion which should be used

to guarantee the participants the highest discounted expected payo�s? Can some

kind of defection be permitted? How should defectors be punished?



5

3 Assumptions and Notation

A set N = f1; 2; : : : ; ng of ex-ante identical potential buyers compete in an in-

�nitely repeated auction game with discounting. Detailed assumptions can be

found below.

The Stage Game

(Assumption 1). Each potential buyer is ex-ante symmetric, drawing an

independent private value for the object in question from a common continuous

distribution function F (�) with strictly positive continuously di�erentiable density,

f(�), de�ned on a compact support [0; a]. For reasons to be made clear later assume

that the hazard function, H(v) := 1�F (v)
f(v)

, is strictly decreasing in v.4 Furthermore

F and f are common knowledge.

(Assumption 2). Each potential buyer is risk neutral.

(Assumption 3). The auctioneer allocates objects via a �rst price auction,

randomizing equally among the winners in the case of a draw. The auctioneer

publicly announces the amount of the winning bid, but does not announce any

other information (including the identity of the winner).

(Assumption 4). Sidepayments are not permitted between potential buyers.

(Assumption 5). The seller's reserve price is normalized to zero.

(Assumption 6). Unicity of equilibrium to the stage game is assumed. 5

The Repeated Game

Let �(t) : [0; a]� [0; c]� t�1 times: : : : : : : : :� [0; c]! [0; c] be a bidding function at time

t. This bidding function sends current valuation as well as all previous winning

bids, (bw(t) 2 [0; c]) into the bidding space [0; c]. Let � = �
t2N

�(t) be the strategy

set of available bidding functions.

(Assumption 7). Players discount future stage pro�ts with a common dis-

count rate � 2 (0; 1).
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(Assumption 8). Valuations are drawn independently and identically across

time.

(Assumption 9). The cartel restricts itself to symmetric and undominated

(in the sense of Pareto) collusive schemes.

(Assumption 10). The equilibrium concept used is that of Rubinstein's

(1979) (subgame) perfect equilibrium.

Assumption 7 above permits the restriction that each potential buyer submit

bids in a compact interval [0; c]. This can be done by taking c to be de�ned as

the highest possible payo� one can receive in the entire game, i.e. c = a
1��

. As-

sumption 9 can be done away with by imposing the Nash bargaining axioms. This

would not be a departure from the mainstream of the literature since modelers

usually choose such a focal point when confronted with a continuum of possi-

ble payo� vectors. However, providing a criterium for the selection of equilibria

in repeated games is outside the scope of this paper. Our objective is simply to

study the best symmetric collusive strategy. Remark that under the informational

structure imposed by Assumption 3 a cartel must, and can, be all encompassing.

This is because a cartel cannot distinguish cheating by a member or non-member,

and it can credibly menace any deviation with a punishment. Finally, note that

due to the assumptions of ex-ante symmetry and continuous distribution function,

a theorem from Milgrom & Weber (1982) can be used to show the existence of

a symmetric bidding equilibrium where the bidding functions are increasing in

valuation.

4 Static Representation of Repeated Auctions

With these assumptions and notations in mind, we now proceed to analyze the

repeated game as a single stage game. Abreu et al. (1986) were the �rst to use a

generalization of the techniques of dynamic programming to analyze noncooper-
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ative games. This permits a very convenient representation of repeated games as

much more tractable single stage games. The intuition is the following. The single

stage representation of a repeated game \factorizes" the gains accruing to each

player into two parts. The �rst part is the gain from the current stage game and

the second part is expected, future gains which can be a function of any observable

action taken in the current period. So this representation needs two elements: a

payo� function for the stage game and a function describing future gains. Propo-

sition 1 states that an equilibrium to the single stage game which satis�es a \self

generation" criterium is an equilibrium to the repeated game. Proposition 2 states

that any perfect equilibrium to the repeated game can be represented as a Nash

equilibrium to the single stage game. Thus the single stage representation is equiv-

alent to the dynamic game. Before stating these propositions some de�nitions are

presented.

De�nition 1 Let W be a bounded Borel subset of R. Let � : [0; a] ! [0; c]

and U : [0; c] ! W be Borel measurable functions and call (�; U) a collusive

mechanism. (�; U) is called admissible with respect to W i� for all b =2 �([0; a]):

�(v; �(v)) + �E bw (U(b
w) j �(v)) � �(v; b) + �E bw (U(b

w) j b)

�(v; b) is the expected payo� of an agent with valuation v who bids b given that

the other agents follow strategy �. U(bw) represents the expected gains of all

agents, given that the winning bid is bw. The operator E bw (� j b) is the conditional

expectation of future gains, from the perspective of an agent having bid b where

all other players follow strategy �. Note that this conditional expectation is well

de�ned due to the assumptions on (Borel) measurability of � and U , as well as

the boundedness of W .

Furthermore de�ne u(v; �; U) := �(v; �(v)) + �E bw (U(b
w) j �(v)). Note that

an ex-ante value can be attached to u(v; �; U), denoted as E vu(v; �; U), by taking



8

the expectation over the valuation. Finally a set valued function B(W ) is de�ned.

De�nition 2 For any (Borel) W � R de�ne:

B(W ) := fE vu(v; �; U) j (�; U) is admissible wrt Wg

De�nition 3 A bounded (Borel) W such that W � B(W ) is called self generat-

ing.

Propositions 1 and 2 are now corollaries to the propositions on self-generation

and factorization in Abreu, Pearce and Stacchetti, since we are assured of the

existence of the conditional expectation. The reader is referred to Abreu et al.

(1986) for the proofs. In the following take V to be the set of perfect payo�s.

Proposition 1 Take any bounded (Borel) W � R which is self generating. Then

B(W ) � V .

Proposition 2 V = B(V ).

5 Optimal Collusive Rules

The goal of this section is to characterize optimal collusive schemes with the help

of the Abreu, Pearce and Stacchetti static game. Results are presented in two

subsections. Subsection 5.1 presents propositions which are used in Subsection

5.2 to present the problem of a maximizing cartel succinctly. Many of the proofs

appear in the appendix

5.1 Punishments and Rewards

In explicitly repeated auctions there are two types of constraints which need to

be satis�ed. One corresponds to the usual self selection constraint: if � is the

collusive bidding rule, then type v prefers bidding �(v) to bidding �(v0). The
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other constraint will be referred to as admissibility. This constraint states that

if � is the bidding rule, type v prefers bidding in �([0; a]), as opposed to bidding

outside �([0; a]). These two constraints are qualitatively di�erent because in the

latter case, a defection can be detected.

Typically the incentive compatibility constraints force the mechanisms to be

structured in such a way that types self select. In the problem at hand, the mech-

anism must indeed be so structured since valuations are not observable. Consider

a collusive mechanism f�(�); U(�)g where � is the bidding function mapping types

into bids and where U(bw) is the future expected payo�s when the winning bid is

bw. Let Q(v; �) denote the probability that a player bidding �(v) wins the auction

given that � is the bidding function used by everyone else. Since the auctioneer

awards the object to the highest bidder, and in the case of draws randomizes,

Q(v; �) can be written explicitly. Obviously if v is in an interval where � suggests

submitting an increasing bid, then Q(v; �) = F (v)n�1. Otherwise if � is constant

within the interval [vi; vj] then for all v 2 [vi; vj] we have:

Q(v; �) =
F (vj)

n � F (vi)
n

n(F (vj)� F (vi))
� Q(vi; vj):

Incentive compatibility can thus be written:

u(v; �; U) := [v � �(v)]Q(v; �) + �Ebw(U(b
w) j �(v))

� [v � �(v0)]Q(v0; �) + �Ebw(U(b
w) j �(v0)) 8v0 2 [0; a]:

Where

Ebw(U(b
w) j �(v)) =

�Z a

v

U(�(s))dF (s)n�1 + U(b)F (v)n�1
�
:

Using the logic of Myerson (1981) we know that incentive compatibility is
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equivalent to demanding that

d

dv
u(v; �; U) = Q(v; �)

Q(v; �) is nondecreasing in v:

We can thus obtain a more convenient characterization of incentive compatibility

which lets us explicitly solve for the bidding function in terms of type conditional

probabilities of winning:

�(v) = v �

�R v

0
Q(s; �)ds+ �

R v

0
[U(�(s))� U(�(v))]dF (s)n�1

Q(v; �)

�
(1)

It is important to note that the bidding function will generally be composed

of (positively) sloped and at regions. From McAfee & McMillan (1992) we know

that a perfectly at bidding scheme is a \folk" type result which speaks to the

case when � is arbitrarily close to unity.

If we are to study collusion in auctions from an explicitly repeated point of

view, as was suggested in the Introduction and in Section 2, another constraint

must be imposed: admissibility. The admissibility constraints will be relevant

whenever � contains at regions. The following lemma furnishes some preliminary

results. Its proof can be found in the appendix.

Lemma 1 Let U denote the lowest expected pro�t credibly attainable. An incen-

tive compatible mechanism f�(�); U(�)g is admissible if and only if for all v� at the

highest edge of a at bidding range we have:

[v� � �(v�)]Q(v�; �) + �U(�(v�))F (v�)n�1 + �

Z a

v�
U(�(s))dF (s)n�1 �

[v� � �(v�)]F (v�)n�1 + �UF (v�)n�1 + �

Z a

v�
U(�(s))dF (s)n�1:

The above is similar to the example introduced in Section 2, in that we compare
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gains to deviation with gains to compliance. The proof consists primarily of

showing the existence of discontinuities in the bidding function, showing that the

imposition of the harshest possible punishment is always bene�cial. Finally we

prove that if all v� at the highest edge of a at bidding range respect admissibility

then all types do.

Using the incentive compatibility constraint (1) and the above lemma, we can

rewrite admissibility as:

�[U(�(v�))� U ] ��Z v�

0

Q(s; �)ds+ �

Z v�

0

[U(�(s))� U(�(v�))]dF (s)n�1
�
F (v�)n�1 �Q(v�; �)

F (v�)n�1Q(v�; �)
: (2)

Note that when the bidding function is strictly increasing admissibility is auto-

matically satis�ed.

De�ne M as an incentive compatible and admissible mechanism which yields

the highest level of expected utility U . De�ne M as an incentive compatible and

admissible mechanism which yields the lowest level of expected utility U . From

section 5 of Abreu et al. (1986) the set of perfect payo�s is compact, so we are

assured that M and M are well de�ned. The remainder of this section aims to

characterize M and M.

In order to satisfy admissibility, credible punishments must be available. Propo-

sition 3 shows that the harshest possible punishment gives the same payo�s as

the single stage Nash equilibrium. Its proof can be found in the appendix.

Proposition 3 No perfect strategy can give less than the payo� associated with

the stage game Nash equilibrium repeated ad in�nitum.

This proposition is an important step in endogenizing punishments as it charac-

terizes the gains to optimal (in the sense of Abreu (1986)) punishments. The proof

relies heavily on the fact that H(v) is decreasing in v along with the fact that the
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only information released by the auctioneer is the winning bid (Assumption 3).

Inequality (2) leads us to an important result on collusion in repeated auctions.

Proposition 4 An optimal collusive mechanism, M = f�(�); U(�)g, must exhibit

the bang-bang property:

U(b) = U for almost every b 2 �([0; a]):

Proof of Proposition 4 Let fQ(�; �); U(�)g be an optimal collusive mechanism,

generating U , for which the bang-bang property does not hold. Therefore, there

exists an interval, [v1; v2], such that U(�(v)) < U for all v 2 [v1; v2]. In this

case we show that there exists an alternative incentive compatible, admissible

mechanism which generates higher rents for all types. This mechanism consists of

raising U(�(v)) by some small amount �U whenever v 2 [v1; v2]. Denote this new

continuation function by U�. All at bidding regions above v2 are cut into two

regions otherwise, the probability of winning is held constant for all other types.

From equation (1), if we increase continuation payo�s in [v1; v2] and wish to

preserve type conditional probabilities of winning an auction (Q(�; �)), it is neces-

sary to change bids in order to retain incentive compatibility. Bids of types lower

than v1 are una�ected by such a change. Studying inequality (2) immediately

shows that types in [v1; v2] will satisfy admissibility. The variation in the rents to

v < v2 are given by:

�u(v2) = [F (v2)
n�1 � F (v1)

n�1]�U

which is strictly positive for all �U > 0.

Consider the intervals [vi; vi] where vi � v2 and for which the bidding function
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is at. Find recursively a v̂i where the following holds:

(v̂i � vi)[Q(vi; vi)�Q(vi; v̂i)] = �u(vi) = �u(vi�i):

Create a new incentive compatible bidding function (using the new continuation

function U�), �� di�erent from � only in that Q(�; ��) exhibits discontinuities at

all v̂i but constant on all the [vi; v̂i] and [v̂i; vi].

We now have �u(v) = (v�v̂i)[Q(v̂i; vi)�Q(vi; vi)] � 0 for all v 2 [v̂i; vi]. Addi-

tionally for all v 2 [vi; v̂i] we have �u(v) = [v�vi][Q(vi; v̂i)�Q(vi; vi)]+�u(vi) �

0. Hence the variation in rents for all types is non negative by construction. It re-

mains to verify that the new mechanism is admissible for all v > v2 if the original

mechanism was.

First consider checking admissibility in [v̂i; vi]. With the original mechanism

we have

vi � �(vi) = (vi � v̂i) +
u(v̂i; �; U)

Q(vi; vi)
:

Under the new mechanism we have that:

vi � ��(vi) = (vi � v̂i) +
u(v̂i; �

�; U�)

Q(v̂i; vi)
:

Since u(v̂i; �
�; U�) = U(v̂i; �; U), and Q(vi; vi) < Q(vi; v̂i) we have that:

vi � ��(vi) < vi � �(vi)

So the admissibility constraint, which can be written:

�[U � U ]F (vi)
n�1 � (vi � ��(vi))[F (vi)

n�1 �Q(vi; �
�; U�)];

is sure to be satis�ed, since the original mechanism was assumed to be admissible
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and Q(vi; �
�; U�) > Q(vi; �; U) and (vi � ��(vi)) < (vi � �(vi)).

Finally, check admissibility in [vi; v̂i]. Notice that as �U approaches zero,

v̂i must approach vi. It follows that for a �U su�ciently close to zero, the

admissibility constraint will be respected for v̂i. �

Consider the McAfee and McMillan at bidding scheme. In this instance, the

incentive compatibility constraint is trivial since there is only one \advised" bid

(the reservation price). However their static formulation abstracted away from

admissibility as was alluded to in the example of section 2. Proposition 4 states

that an optimal collusive scheme should be structured so that any bid in �([0; a])

be treated as respecting cartel rules, and any bid not in �([0; a]) should be treated

as defection6.

It follows directly from Proposition 4 that the bidding function takes on the

familiar form:

�(v) = v �

R v
0
Q(s; �)ds

Q(v; �)
: (3)

It is also easy to verify that any at section in the bidding function must be pre-

ceded and followed by discontinuities. Suppose that a at section somewhere in

the bidding function starts at valuation v� > 0 and ends at valuation v�� < a.

Since the probability of a bidder with valuation v� winning is discretely greater

than the probability of a bidder with valuation v� � " for any " > 0, the de-

nominator of the above equation increases discretely at v�. Therefore �(v�) must

increase discretely as well. The argument that a at section must be followed by

a discontinuity is precisely the same.
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5.2 Collusive Schemes as Optimization Problems

De�ne the operator 	 in the following manner:

	(K) = sup
�

Z a

0

H(v)[Q(v; �)� F (v)n�1]dF (v) (4)

subject to:

F (v)n�1K �

R v

0
Q(s; �)ds

Q(v; �)
[F (v)n�1 �Q(v; �)] 8v 2 [0; a]: (5)

The constraint is the admissibility constraint where the bid has been substituted

out using equation (3) and where the variable K can be seen to take the place of

�[U � U ]. 	(K) in equation (4) represents the di�erence in the per period rents

between collusion using bidding function � and playing the Nash stage game

equilibrium strategy. Note that if

�

1� �
	(K) � K

then the collusive scheme giving payo�s of 	(K) every period is admissible. This

amounts to comparing K with the future payo�s generated by K.

The following lemma regroups several preliminary results. Its proof is relegated

to the appendix.

Lemma 2 i) 	(�) is non decreasing in its argument.

ii) 	(0) = 0.

iii) For any K � a[1� (1=n)], 	(K) =
R a
0
H(v)[ 1

n
� F (v)n�1]dF (v).

iv) There is a �nite � such that 	(K) � �K for all K.

The above lemma contains some immediately interpretable results. The fact

that 	(�) is non decreasing in its argument, means that gains to collusion are

non decreasing in �. And in fact, when players are perfectly myopic (� = 0) then
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collusion gains and the gains to the Nash stage game equilibrium strategy are

equal. This of course follows from the fact that 	(0) = 0. The interpretation of

part iii is straightforward to interpret and is best seen as a result of McAfee &

McMillan (1992) who only consider the incentive compatibility constraint. The

interpretation of condition iv will be postponed until the statement of proposition

5.

It is possible to prove that 	(K) subject to constraint (5) is continuous by

appealing to the Theorem of the Maximum, however this does not imply that

collusive pro�ts are continuous in �. Consider Figures 1 and 2 which plot 	(K)

against K. The maximal admissible and incentive compatible collusive payo�s

are given by the intersection of 	(K) and the line with slope 1��
�
. This follows

because whenever 	(K) � 1��
�
K we know that the future expected collusive rents

are large enough to satisfy admissibility required to enforce this collusion. As in

Figure 1, if 	(K) is concave in K, then collusive gains are indeed continuous in

K. However if 	(K) is not globally concave, as is the case in Figure 2 then a

small change in � could generate a large change in the intersection of 	(K) with

1��
�
. The relationship between the concavity of 	(K) and the parameters of the

problem is a complex one and we have no reason to believe that 	(K) is globally

concave for all distributions satisfying Assumption 1. Nevertheless we can state

the following proposition.

Proposition 5 i) For all � there exists an optimal collusive scheme.

ii) There exists a �̂ > 0 such that if � < �̂ no collusion is possible.

Proof of Proposition 5 i) Let 	� = sup
K

fsup
�

R a
0
H(v)[Q(v; �)�F (v)n�1]dF (v)g

subject to constraint (5). Let K� and �� be the arguments which obtain the sup.

Assume that 	� is not admissible, i.e. �
1��

	(K�) < K�. But there exists some

sequence Kn ! K� such that �
1��

	(Kn) � Kn for all n. If the sequence fKng is
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non monotone or monotone decreasing, then we have a contradiction since 	(K)

is non decreasing in K. So assume that Kn " K�. Since Kn " K�, there exists

a sequence "n # 0 such that Kn + "n = K�. Making a substitution we obtain

�
1��

	(K�) < Kn+ "n. But for n su�ciently large, we have �
1��

	(K�) < Kn which

is a contradiction since K� � Kn and 	 is nondecreasing.

ii) From Lemma 2 we know that there exists a �nite number � such that

	(K) � �K for all K. For a collusive scheme to be admissible and incentive

compatible we require that �
1��

	(K) � K. Putting 1
�
= �̂

1��̂
assures us that for

all � < �̂, this cannot be the case.

The next proposition narrows down the class of optimal collusive bidding func-

tions.

Proposition 6 If U > U then an optimal collusive bidding function can contain

no continuous increase in the bidding function.

The proof of proposition 6 can be found in the appendix. The implications of

this proposition are strong as it implies that an optimally colluding cartel will use

a bidding function which has a �nite range. For example all bidders with type

in [v0; v1] bid b0, all bidders with type in [v1; v2] bid b1 etc. Athey, Bagwell &

Sanchirico (1998) �nd a similar result for collusion in a Cournot oligopoly with

incomplete information about cost.

6 Auctioneer Behavior

The tractability of the model used up to now has come at the expense of many

simplifying assumptions. This current section argues that despite the simplicity

of the model, analysis of collusion in an explicitly repeated environment can lead

to interesting and robust insights as to how an auctioneer can best structure a

series of auctions to resist bidder collusion. This section has three subsections,
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each presenting a di�erent way that auctioneers could design auctions to lessen

their losses due to collusion. The following lemma is a preliminary result used in

each of the following subsections and its proof can be found in the appendix.

Lemma 3 If an optimal collusive bidding function exhibits one or more discon-

tinuities, then there exists at least one type indi�erent between adhering to and

defecting from prescribed behavior.

6.1 Reserve Prices and Bidding Ceilings

The use of reservation prices to combat collusion has been studied by Graham &

Marshall (1987) as well as McAfee & McMillan (1992). This analysis is strength-

ened by the observation that auctioneers in fact do use reserve prices to increase

their pro�ts in the face of collusion.7 In McAfee & McMillan (1992), since the

cartel colludes so that all types are awarded the good with equal probability, the

objective of the auctioneer is to solve the following:

max :
r

(r � v0)[1� F (r)n];

where r denotes the reserve price and v0 the seller's valuation.

In the more general case studied in this paper, the task of �nding an optimal

reserve price is a more daunting one. This is principally due to the fact that an

optimal collusive rule depends on the reservation price in a non trivial way (as was

the case studied by McAfee & McMillan (1992)). The objective of the auctioneer

is:

max
r

:

Z a

r

�(v; r)dF (v)n

where the bidding function not only depends on the valuation but also on the

reserve price. It is an easy exercise to extend the analysis of subsection 5.2 to
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accommodate a non zero reserve price. This is necessary to do in order to de-

rive an optimal collusive bidding function for a given reserve price. Assuming

di�erentiability and concavity of the problem, we are looking for r� such that:

��(r�; r�)nf(r�)F (r�)n�1 +

Z a

r�

@�

@r
(v; r�)dF (v)n = 0:

In McAfee & McMillan (1992), @�

@r
(v; r) is equal to one. In a more traditional non

collusive setting (for example Myerson (1981)) @�

@r
(v; r) is equal to F (r)n�1

F (v)n�1 . In a

general collusive setting, it is not possible to assign a value to @�

@r
(v; r). This is due

to the ambiguous e�ect of a reserve price on the admissibility constraint: a change

in the reserve price a�ects the admissibility constraint through U ; additionally a

change in the reserve price modi�es a collusive bidding function by changing type

conditional probabilities of winning the auction. Hence, the impact of the reserve

price on the ability of the cartel to collude is ambiguous, a fortiori so is its impact

on the equilibrium bidding schedule.

A tool to increase auctioneer pro�ts which is only apparent from an explicitly

repeated context is a bidding ceiling. Consider the example presented in section 2

but with a bidding ceiling of 1/4. Single stage expected Nash pro�ts now increase

and become 31/162. Therefore in order for there to be no type of bidder who does

not want to defect from the strategy of bidding zero it is necessary and su�cient

that:

1

2
+

�

1� �

1

4
� 1 +

�

1� �

31

162

Where the left hand side represents the gains to obeying the collusive rule for an

agent with valuation one, and the right hand side represents the gains to defect-

ing from the collusive rule for an agent with valuation one. This equation is only

satis�ed for � larger than 6/7. That bidding ceilings can positively e�ect auction-

eer pro�ts is perhaps surprising, but the intuition is quite straightforward if one
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thinks in terms of a repeated context: lowering the bidding ceiling makes future

punishments less severe, and a less severe punishment can support a less pro�table

form of collusion. The following proposition gives some general conditions as to

when lowering a bidding ceiling can be useful.

Proposition 7 Suppose that the current price ceiling, b, is strictly greater than

the highest bid prescribed by the optimal collusive bidding function. Then auction-

eer pro�ts can be strictly increased by a lowering of the bid ceiling.

Proof of Proposition 7 Assume, without loss of generality, that the bidding

ceiling is less than or equal to the highest single stage Nash bid. Now remark

that since b is strictly greater than the highest prescribed bid, b can be lowered by

" > 0 while still preserving this inequality. Furthermore since lowering b by any

amount increases the single-stage Nash expected payo�s, any indi�erent types will

now strictly prefer defecting from the cartel to obedience. Therefore, the cartel

must remedy this problem by decreasing the length of certain \at spots" on the

bidding function or adding more discontinuities. Either response results in lower

pro�ts to the cartel and higher pro�t to the auctioneer. If the optimal bidding

function contains no discontinuities, then there may not be an indi�erent agent

(lemma 3). However, by choosing the bidding ceiling such that the Nash single

stage payo� and the collusive (bidding zero) single stage payo� di�er by less than

an�1
n

1��
�
, then at least one type strictly prefers defection. This new bidding ceiling

obviously leads to a higher average winning bid. �

Stated di�erently, the above says that a necessary condition for an auctioneer

to maximize pro�ts is to have the bidding ceiling equal to the highest prescribed

bid of an optimal collusive bidding function. This is a strong result since it implies

that auctioneers always pro�t from the imposition of a ceiling. Unfortunately,

while bidding ceilings and reserve prices may be useful in increasing auctioneer
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payo�s the following proposition shows that they are not su�cient for maximizing

auctioneer pro�ts. The intuition is similar to that of proposition 7 in that one can

outlaw other portions of the range of bids in order to weaken future punishments.

Proposition 8 Controlling the bidding ceiling and reserve price is not su�cient

for an auctioneer to maximize pro�t.

Proof of Proposition 8 Suppose that the auctioneer has maximized his pro�t

with respect to the bidding ceiling and oor.8 From lemma 3 and proposition 7

there exists at least one type indi�erent between defecting from and adhering to

cartel rules. Denote the prescribed bids of this bidding function fb1; : : : ; bkg, such

that bi > bi�1 for all i. Proposition 7 implies that b = bk. Now outlaw bidding in

an interval just below bk: (bk�"; bk): Single stage Nash payo�s must increase when

any interior portion of the bidding range is outlawed. Since there exists a type

indi�erent between adhering and defecting under the old system, this type now

strictly prefers defecting. Therefore, in order for cartel pro�ts not to decrease, the

cartel must come up with a more pro�table collusive scheme. By assuming that

the cartel had chosen an optimal collusive bidding function, the only way for the

cartel to improve payo�s is to permit bidding at bk � ". The key is recognizing

that since " can be taken to be arbitrarily small the admissibility constraint will

not be binding between bidding bk � " and bk. Consider three possibilities: 1)

replace bk by bk� ", 2) replace bk�1 by bk� ", 3) add a new bidding level at bk� ".

In each case if a cartel were able to increase its pro�tability this would imply that

it had originally chosen a non optimal collusive bidding function{a contradiction.

�

The surprising results on bidding ceilings is quite intuitive, yet to our knowledge

bidding ceilings do not exist.



22

6.2 Tiebreaking Rules

The ine�ciency of the McAfee and McMillan collusive scheme has been retained

to a certain extent; thus one would expect to observe identical bids. Due to the

presence of these identical bids the choice of tiebreaking rule used by the auctioneer

becomes important through its e�ect on the admissibility constraint. Consider the

example in section 2. Assuming a randomization on the part of the auctioneer in

case of ties (ex post randomization) we see that the McAfee and McMillan scheme

is enforceable only when � � 6=7. Now consider what happens if the auctioneer,

prior to bids being submitted, publicly designates a winner in case of equality in

the highest bid (ex ante randomization). Assume the designation is made by a

ip of a coin. In this case the necessary and su�cient condition for obedience to

this scheme is the following:

0 +
�

1� �

1

4
� 1 +

�

1� �

Z 1

0

v(1� v)dv:

The di�erence here is the �rst term on the left hand side. This term reects that

a player with a valuation of one has been designated as the loser in case of a tie.

The gains to defecting from cartel rules have increased as is reected by solving for

� in the above inequality to reveal � � 12=13. The above argument is formalized

in the following proposition.

Proposition 9 Bidder pro�ts under ex post randomization are always at least as

large as under ex ante randomization.

Proof of Proposition 9 Consider the optimal collusive scheme fv�1; v
�
2; : : : g, and

suppose v 2 [v�k; v
�
k+1]. The admissibility constraint under ex post randomization
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is:

vQ(v�k+1; v
�
k) +

�

1� �

X
i

Q(v�i+1; v
�
i )

Z v�i+1

v�i

H(v)dF (v) �

vF (v�k+1)
n�1 +

�

1� �

Z a

0

H(v)F (v)n�1dF (v):

Now consider the admissibility constraint under ex ante randomization:

vF (v�k)
n�1 +

�

1� �

X
i

Q(v�i+1; v
�
i )

Z v�i+1

v�i

H(v)dF (v) �

vF (v�k+1)
n�1 +

�

1� �

Z a

0

H(v)F (v)n�1dF (v):

ComparingQ(v�k+1; v
�
k) with F (v

�
k)

n�1 implies that one can use lemma 3 to arrive at

the following conclusions. If there exists one or more discontinuities in the bidding

function then ex ante randomization strictly dominates ex post randomization. If

there exists no discontinuity then ex ante randomization weakly dominates ex

post randomization. �

The above argument implies that a cartel would always prefer to face ex post ran-

domization. The existence of rotating bidding schemes may be interpreted to be

the cartel's reaction to an \unaccommodating" auctioneer. That the e�ect on auc-

tioneer pro�ts of such a simple change in the randomization rule is unambiguous,

it is surprising that one does observe auctioneers who use ex post randomization.

6.3 Bundling

Oftentimes services can be procured through auctions occuring with a regular

frequency. One might think of a garbage collection contract being awarded by a

municipality through auction every year. For the present purposes, the important

part of this scenario is that the auction occurs every year. Once again consider the

example of section 2, but now assume that the auctioneer sells 2 items at every
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other period{the auctioneer bundles items. In this case a necessary and su�cient

condition for obedience to the McAfee and McMillan scheme is the following

inequality:

2
1

2
+

�2

1� �2
1

4
� 2 +

�2

1� �2

Z 1

0

v(1� v)dv:

Solving for � one obtains � �
p
12=13. One observes two e�ects here. The �rst

is the reduction in the e�ective discount rate from � to �2. The second is the

increase in the gains to cheating. Again we formalize the above intuition into the

following proposition.

Proposition 10 Bidder pro�ts are always decreasing in the number of items bun-

dled together.

Proof of Proposition 10 For simplicity consider bundling two items together,

and compare the corresponding admissibility constraint with the admissibility con-

straint when there is no bundling. Again consider the collusive scheme fv�1; v
�
2; : : : g,

and suppose v 2 [v�k; v
�
k+1]. One can write down the admissibility constraints and

compare 2v[F (v�k+1)
n�1 �Q(v�k+1; v

�
k] and v[F (v�k+1)

n�1 �Q(v�k+1; v
�
k)]. The e�ect

of the decrease in the discount factor is straightforward. Using lemma 3 one can

reason along the same lines as in the previous proposition. If the bidding function

has at least one discontinuity then domination by bundling is strict. If the bidding

function contains no discontinuity then the domination is weak. �

It is important to stress that this last argument has ignored important considera-

tions such as any costs a municipality may incur in making a long term commit-

ment to a single service supplier.
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7 Conclusion

Collusion without sidepayments in explicitly repeated auctions has been studied.

It is the repeated nature of the model which di�erentiates it from earlier work.

Techniques �rst developed by Abreu, Pearce and Stacchetti were used to endog-

enize punishments. These punishments di�er from the usual trigger strategies in

that an auction is a game of incomplete information. Collusion is characterized by

its stability and ine�ciency. Collusion is e�ectuated by submitting identical bids,

or using a rotating bidding scheme{predictions which are commonly used car-

tel tactics. Studying an explicitly repeated game leads to several insights about

optimal auctioneer behavior not apparent when studying a static game. The

main �nding of the paper, that cartels are obliged to use a randomization rule to

overcome incentive compatibility problems, is supported by the observation that

identical bids and rotating bid schemes are observed.

A Appendix

Proof of Lemma 1 Suppose � to be constant on [vi; vj]. First remark that

Q(v; �) is discontinuous at vj, and that in particular Q(vj; �) < F (vj)
n�1. Sup-

pose that the condition in the statement of the lemma is violated and that �

is continuous at vj. Then since U(�(vj + ")) � U for all " > 0, there exists a

small " such that bidders of type vj prefer to bid �(vj + "), violating the incen-

tive compatibility constraints. Now suppose that � is discontinuous at vj. From

equation (1) one can verify that � is also discontinuous at vj. Therefore there

exists a b =2 �([0; a]) which is arbitrarily close to �([vi; vj]) yet which discretely

increases the probability of winning. A (credible) punishment must be available

to dissuade such a deviation. This punishment can be made as severe as possible

without harming cartel gains, in so far as it is only used o� the equilibrium path,
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i.e. bw =2 �([0; a]).

To prove the only if part, notice that admissibility implies that all types respect

the above inequality, and in particular vj respects the above inequality.

To prove the if part, de�ne �+ = lim
v#vj

�(v). Similarly de�ne �� = lim
v"vj

�(v).

Since � is discontinuous at vj we have that �+ > ��. Any bid in (��; �+] will

win the auction with probability F (vj)
n�1. The inequality in the statement of

the lemma implies that vj prefers following his equilibrium strategy rather than

deviating. Fix v < vj. By monotonicity of preferences, v also prefers bidding ��

than bidding in (��; �+]. A similar argument shows that all v > vj prefer bidding

�+ to bidding in (��; �+]. �

Proof of Proposition 3 Notice �rst that Assumption 3 implies that punish-

ments cannot be bidder speci�c{all players must receive the same expected payo�

from punishment.

Gains to a player with valuation v from the collusive mechanism (�; U) are:

Z v

0

Q(s; �)ds+ �

Z a

0

U(�(v))dF (v)n�1;

which can be used to calculate ex-ante rents:

Z a

0

H(v)Q(v; �)dF (v) + �

Z a

0

U(�(v))dF (v)n�1: (6)

Consider in�nite, or unrelenting, punishments. Let (�1; U1) be an incentive

compatible collusive mechanism which minimizes (6):

min
�1;U1

:

Z a

0

H(v)Q(v; �1)dF (v) + �

Z a

0

U1(�1(v))dF (v)
n�1

Since payo�s are constrained to be in V , the perfect equilibrium set, and V =
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B(V ), there exists another collusive couple, (�2; U2) giving the same payo�s asR a
0
[E b(U1(b) j �1(v))]dF (v). Working iteratively in this manner one obtains that

the payo� to this punishment is:

1X
i=1

�i�1
Z a

0

H(v)Q(v; �i)dF (v):

Incentive compatibility requires Q(�; �) to be non decreasing. From Lemma 4 in

the appendix the above expression is minimized when we rule out constant bidding

regions, i.e. when the bidding rules are constrained to induce e�ciency so that

Q(v; �) = F (v)n�1. The single stage Nash strategy accomplishes this task while

satisfying incentive compatibility. Note that when bidding rules are constrained

to induce e�ciency payo�s are necessarily equal to the Nash equilibrium stage

game payo�s.

The next step is to show that participants always bid with probability one.

Suppose a mechanism which randomly selects agents not to bid. The identity of

the winning bidder is unobservable, so future gains can only be a function of the

winning bid. Therefore for a certain agent with a given type to be indi�erent

between bidding and not bidding, all agents with lower valuation must strictly

prefer not bidding and all agents with higher valuation must strictly prefer bidding.

Consider a mechanism that in the �rst round outlaws bidding below r > 0, and let

�0 be the future expected gains if nobody bids. Admissibility of the mechanism

implies:

��0F (r)
n�1 � rF (r)n�1 + �UF (r)n�1:

And since F (r)n�1 > (1� F (s))F (s)n�1 for all s in [0; r] we have that:

rF (r)n�1 + �UF (r)n�1 >

Z r

0

(1� F (s))F (s)n�1ds+ �UF (r)n�1:



28

This previous expression represents using the Nash bidding strategy in the interval

[0; r]. Therefore we have contradicted the supposition that outlawing bidding in

a certain region dominated using the Nash bidding strategy. �

Proof of Lemma 2 i) Fix K� > K. Obviously any Q(�; �) satisfying constraint

(5) for K will satisfy (5) for K�.

ii) When K = 0 the left hand side of (5) is zero, so in order for the constraint to

be respected the right hand side must be less than or equal to zero. By proposition

3, the only bidding function satisfying this requirement is the single stage Nash

equilibrium bidding function.

iii) Incentive compatibility implies that due to informational asymmetries col-

lusive gains can be no higher than those from using a scheme awarding the good to

all types with equal probability (McAfee & McMillan (1992) Theorem 1). When

such a scheme is used, a necessary and su�cient condition for all types to re-

spect admissibility is for type a to respect admissibility. For type a to respect

admissibility implies K � a[1� (1=n)].

iv) Suppose Q is the function derived from the bidding function which solves

(4) subject to (5). LetQ advise bidding a constant amount on [v0; v1]; [v2; v3]; : : : [vm�1; vm].

	(K) can be written:

	(K) =
mX
i=1

Z v2i�1

v2(i�1)

[1� F (v)][Q(vi�1; vi)� F (v)n�1]dv =

mX
i=1

Z v2i�1

v2(i�1)

[F (v)n�1�Q(vi�1; v)]

�Z v

v2(i�1)

[1�F (x)]dx
f(v)

F (v)� F (vi�1)
�[1�F (v)]

�
dv:

(7)

The above equality is obtained from the fact that @Q(vi�1;v)
@v

= [F (v)n�1�Q(v; vi�1)]
f(v)

F (v)�F (vi�1)
.
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From inequality (5) we have that

Q(v; �)R v
0
Q(s; �)ds

F (v)n�1K � F (v)n�1 �Q(v2(i�1); v) 8v 2 [v2(i�1); v2i�1]:

Since Q(v2(i�1); v) � F (v)n�1 and Q(s; �) � F (s)n�1=n, we have:

K � nK
F (v)n�1F (v)n�1R v

0
F (s)n�1ds

� [F (v)n�1 �Q(v2(i�1); v)];

where  = maxv :
nF (v)2n�2

R v
0
F (s)n�1ds

: Note that  is �nite. Substituting this into equation

(7) we obtain:

	(K) � K
mX
i=1

Z v2i�1

v2(i�1)

�Z s

v2i�1

�
1� F (x)

f(x)
�
1� F (s)

f(s)

�
dF (x)

F (s)� F (v2(i�1))

�
dF (s):

Since the term in brackets is decreasing in v2(i�1), we have

	(K) � K

Z a

0

Z s

0

�
1� F (x)

f(x)
�

1� F (s)

f(x)

�
dF (x)

F (s)
dF (s):

This proves the existence of a �nite number, � such that 	(K) � �K. �

The proof of proposition 6 makes reference to the following lemma which we

state and prove before the proof of proposition 6.

Lemma 4 For any 0 < v00 < v1 < a it is the case that:

Z v1

v00

H(v)
F (v1)

n � F (v00)
n

n(F (v1)� F (v00))
dF (v) �

Z v1

v00

H(v)F (v)n�1dF (v):

Proof of Lemma 4 After an integration by parts the above inequality can be
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written:

Z v1

v00

H 0(v)
F (v1)� F (v)

(F (v1)� F (v00))
dv �

Z v1

v00

H 0(v)
F (v1)

n � F (v)n

(F (v1)n � F (v00)
n)
dv:

Since H 0(v) < 0, it su�ces to show:

F (v1)� F (v)

(F (v1)� F (v00))
�

F (v1)
n � F (v)n

(F (v1)n � F (v00)
n)

8v 2 (v00; v1):

Since it is the case that F (v00) < F (v) < F (v1), F (v) can be written:

F (v) = �F (v00) + (1� �)F (v1) for some � 2 (0; 1).

Therefore after substitution and a rearrangement it is su�cient to show that:

[�F (v00) + (1� �)F (v1)]
n[F (v1)� F (v00)]

� [�F (v00)
n + (1� �)F (v1)

n][F (v1)� F (v00)]

Which is always satis�ed since F (v)n is a convex function of F (v). �

Proof of Proposition 4 Suppose an optimal collusive bidding function which is

continuously increasing for some interval [v0; v1] � [0; a]. To show a contradiction,

modify the bidding rule so that it awards the object to types in [v0; v1] with equal

probability and respects incentive compatibility. There are two cases which will

be considered separately: 1) Type v1 is weakly prefers the old scheme. 2) Type

v1 strictly prefers the new scheme. In each treatment incentive compatibility is

veri�ed while using the original value U , then it is shown that the new bidding

function generates a higher U .

Case 1 Suppose that after invoking b00, type v1 is just as well o� as under the
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old bidding function. Therefore bidding levels b1 and b2 can be maintained and all

incentive compatibility constraints are satis�ed. Now apply lemma 4 to see that

the expected value to collusion has been increased. Suppose that type v1 strictly

prefers the old scheme. Then if b1 and b2 are held constant, the type indi�erent

between bidding b00 and b1 will be located to the left of v1. Now raise b1 and

b2 such that the indi�erent type between bidding b00 and b1 remains v1 and such

that the indi�erent type between bidding b1 and b2 remains v2. Notice that this

change in the bidding function has not changed the probabilities that any type

greater than v1 wins the auction and all incentive compatibility and admissibility

constraints are respected. Now apply lemma 4.

Case 2 Suppose that type v1 strictly prefers the new scheme. Then the type

indi�erent between bidding b00 and b1 moves to the right of v1. Call this new

indi�erent type v01. Incite v01 to move back to v1 by decreasing the continuation

payo� if the winning bid is b00. Such a change produces a more pro�table bidding

function by lemma 4, but may not produce higher rents. Invoke Proposition 4 to be

assured of the existence of a collusive mechanism with a bidding function which is

never continuously increasing and having the bang-bang property. This bang-bang

mechanism uses a bidding function which is even more pro�table. Furthermore,

such a bang-bang mechanism generates U =
R a

0
H(v)Q(v; ��)dF (v), where �� is

the newest bidding function. So since the bang-bang mechanism produces rents

which are generated by a bidding function which dominates the original scheme,

the proposition is proved. �

Proof of Lemma 3 Suppose there does not exist an indi�erent type under an

optimal collusive bidding rule. Call this rule � and denote the single stage pro�ts

it generates by
R a
0
H(v)Q(v; �)dF (v). Due to the lack of an indi�erent type, there
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exists � > 0 such that � 0 is incentive compatible if it satis�es
R a

0
j�(v)�� 0(v)jdv <

�. Now we can choose a (�nite) sequence of bidding functions (�k)Kk=1 such that

for all k 2 f1; 2; : : : ; K � 1g: 1)
R a
0
j�k(v) � �k+1(v)jdv < �, 2) �K(v) = 0 for all

v, 3) �1 = �, and 4)
R a

0
H(v)(Q(v; �k+1)�Q(v; �k))dF (v) > 0. We are assured of

4) because H(v) was assumed strictly decreasing, and we are assured that K > 1

because there is at least one discontinuity in the bidding function. Obviously this

sequence contains at least two bidding functions which are incentive compatible

and at least one which gives higher single stage payo�s than �, contradicting the

hypothesis on the optimality of �. �
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	(K)

K

...............................................................

...................................................................

a[1� (1=n)]

1��
�

	(a(1� (1=n)))

Figure 1: Graph of 	(K)
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K
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a[1� (1=n)]

1��
�

	(a(1� (1=n)))

Figure 2: Graph of 	(K)
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Figure 3: A bidding function
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Notes

1In fact it is di�cult to give an example of a purely one shot auction.

2Under usual hypotheses identical bids should be observed with zero probability.

3In a recent paper Athey et al. (1998) have explored this issue.

4This is the case for most common distributions. See Bagnoli & Bergstrom (1989) for more

details.

5Quoting fromWilson (1992): "...for symmetric �rst-price auctions there is some presumption

that the symmetric equilibrium is the unique equilibrium."

6Note that contrary to Abreu et al. (1986) the bang-bang property is de�ned so that it

invokes the harshest punishment as well. This is not a necessary condition for Proposition

4, but a su�cient one. This is because a less than maximal punishment may su�ce to ensure

obedience to a bidding rule specifying bidding zero regardless of valuation. To see that a maximal

punishment is su�cient, notice that deviation will be observed with probability zero thus will

not a�ect payo�s. Furthermore, a harsher punishment can always support a scheme supportable

by a weaker punishment. Note that if the admissibility constraint is binding, then the harshest

possible punishments must be used as well.

7See the discussion in section II. of Graham & Marshall (1987).

8It can be shown that pro�ts move continuously in the bidding ceiling and reserve price.

Since we can consider a compact region over which to select the reserve price, we are assured of

the existence of a maximum.
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