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RESUME

bY

Nous nous intéressons a l'estimation non paramétrigue d'une fonction de

régression instrumentale ¢ . Cette fonction est définie a I'aide de conditions de moment
provenant d'un modele économeétrique structurel de la forme E - ¢(Z)|\NQ: 0, ou les

Y et Z sont des variables endogenes et les W des instruments. La fonction ¢ est alors

la solution d'un probleme inverse mal posé, et nous proposons une procédure
d'estimation utilisant la régularisation de Tikhonov. Le papier analyse l'identification et la
suridentification du modéle et donne les propriétés asymptotiques de I'estimateur de la

régression instrumentale non paramétrique.

Mots clés : variables instrumentales, équation intégrale, probleme mal posé,

régularisation de Tikhonov, lissage par noyau

ABSTRACT

The focus of the paper is the nonparametric estimation of an instrumental

regression function ¢ defined by conditional moment restrictions stemming from a
structural econometric model : E Y- ¢ (Z)WH= 0, and involving endogenous variables

Y and Z and instruments W. The function ¢ is the solution of an ill-posed inverse

problem and we propose an estimation procedure based on Tikhonov regularization.
The paper analyses identification and overidentification of this model and presents

asymptotic properties of the estimated nonparametric instrumental regression function.

Key words : instrumental variables, integral equation, ill-posed problem, Tikhonov

regularization, Kernel smoothing



1 Introduction

An economic relationship between a response variable Y and a vector Z of
explanatory variables is often represented by an equation:

Y =p(2)+U, (1.1)

where the function ¢(.) should define the relationship of interest while U is
an error term'. The relationship (1.1) does not characterize the function ¢ if
the residual term is not constrained. This difficulty is solved if it is assumed
that E[U | Z] = 0, or if equivalently ¢ (Z) = E[Y | Z]. However in numerous
structural econometric models, the conditional expectation function is not
the parameter of interest. The structural parameter is a relation between
Y and Z where some of the Z components are endogenous. This is the
case in various situations: simultaneous equations, error-in-variables models,
treatment model with endogenous selection.

The objective of this paper is to analyze the endogeneity problem of
Z in a more general way than in these specific models and to avoid any
parametric restriction on the ¢ function.

The first question is to add assumptions to equation (1.1) in order to
characterize . Two general strategies exist in the literature, at least for
linear models. The first one consists to introduce some hypothesis on the
joint distribution of U and Z (for example on the variance matrix). The sec-
ond one increases the vector of observables from (Y, Z) to (Y, Z, W), where
W designates instrumental variables. The first approach was essentially fol-
lowed in the error-in-variables models and some similarities exist with the
instrumental model analysis (see e.g. Malinvaud (1970) , Florens, Mouchart,
Richard (1974 and 1987) for the linear case). Instrumental variable analysis
was proposed by Reiersol (1941), Reiersoll (1945) and extended by Theil
(1953), Basmann (1957) and Sargan (1958).

This paper considers an instrumental variables treatment of the endo-
geneity. However, even in the instrumental variables framework, definition of
functional parameter of interest remains ambiguous in the general nonlinear
case. Three possible definitions of ¢ have been proposed?:

i) The first one replaces E[U | Z] = 0 by E[U | W] = 0, or equivalently it
defines ¢ as solution of:

ElY —(Z) | W] =0. (1.2)

This definition was the foundation of the analysis of simultaneity in
linear models or parametric nonlinear models (see Amemiya (1974)), but

'We remain true to the tradition in Econometrics of additive error terms. See e.g.
Imbens and Newey (2001) for alternative structural approaches.

2A general comparison between these three concepts and their extensions to more
general treatment models is done in (Florens, Heckman, Meghir, Vytlacil (2001)).



its extension to the nonparametric case comes up against difficulties. This
paper treats this problem in the framework of ill-posed inverse problems (see
for previous tentative Newey, Powell (2000), quoted in Pagan, Ullah (1999));

ii) A second approach is now called control function approach and was sys-
tematized by Newey, Powell et Vella (1999)). This technic was previously
developed in specific models (e.g. Mills ratio correction in some selection
models for example). The starting point is to compute E[Y | Z, W] which
satisfies:

ElY | Z,W] = ¢ (Z) + h(Z, W), (1.3)

where h(Z,W) = E[U | Z,W]. Equation (1.3) does not characterize .
However we can assume that there exist a function V' (the control function)
of (Z,W) (typically Z — E[Z | W]) which captures all the endogeneity of
Z in the sense: E[U | W, V] = E[U | V]. This implies that (1.3) may be
rewritten in:

EY | Z,W] = ¢ (2) + h(V), (1.4
and, under some conditions, ¢ may be identified from (1.4), up to an additive

constant term.

iii) A third definition follows from the literature on treatment model (see
e.g. Imbens, Angrist (1994), Heckman, Ichimura, Smith, Todd (1998) and
Heckman, Vytlacil (1999)). We simplify extremely this analysis by consid-

ering Z and W as scalar. Local instrument is defined by 8Eg‘;|,W] / aEa[a',W],
and the function of interest ¢ is assumed to be characterized by the relation:
AE[Y|W] B
oW __ _ -
3B 2] E {8Z | W} . (1.5)
ow

These three concepts are identical in the linear normal case but differ in
general, as it is shown in the two following examples.

Example 1.1: Let us consider a trivariate zero mean normal distribution
(Y, Z,W). The linear function $Z where = E[YW| /E[ZW] satisfies the
three conditions (1.2), (1.4) and (1.5), with V(Z, W) = Z— E[Z | W]. More
generally, any function ¢ such that E[Y — ¢ (Z)] = 0 and W is independent
of (VY — ¢ (Z)), satisfies the two conditions (1.2) and (1.4). Then, we get:

angmlw] _ aE[wgﬁf) W _ 8?4//90(Z)p(Z—E(Z|W))dZ,

where p is the density of V. Under boundary conditions (1.5) follows by
integration by part.

Example 1.2:
If a function ¢* fulfills (1.4), we get:



EY W] =E[p*(Z) W]+ E[(V)W],
whereas, for a function ¢ conformable to (1.2):
EY|W]=E[p(2)|W].
Therefore:
Elp(2) =" (Z) W] = E[h (V) W],

is not constant in general, even if V. = Z— E [Z|W]. The difficulty comes
from the fact that, besides the normal case, V is not independent of W in
general and nonlinear functions h(V) of V' may be correlated with W. An
explicit counterexample with conditional heteroscedasticity is provided in
Appendix E. Tt is also shown that such nonlinearities will imply that neither
¢ nor g*are solution of (1.5).

The paper analyses the definition of the structural parameter implicitly
derived from the functional equation (1.2). This is actually an equation of
the type A(p, F') = 0, where F' is the probability distribution of (Y, Z, W).
We point out the condition on F' which determines uniquely the solution.
Estimation of ¢ is obtained by solving A(y, Fy) = 0, where Ey is a smooth
estimator of F'. However this equation has no solution which depends con-
tinuously on F' (ill-posed inverse problem) and it must be transformed into
a regularized inverse problem. The asymptotic properties of the solution are
finally given. Contrarily to most of the nonparametric asymptotic theories,
we do not obtain a speed of convergence just depending on the sample size
and on the bandwidth. It also depends on the distribution of the variables
(through the dependance scheme between the instruments and the endoge-
nous variables) and on the behavior of a Tikhonov regularization parameter.
However we can compute lower bound of the speed of convergence and dis-
cuss optimal choices of the regularization parameters. A general concept of
poor instruments and more precisely a measure of the information about
the instrumental regression function provided by a given set W of instru-
ments is proposed through the asymptotic behavior of Tikhonov regularized
solutions.

2 The instrumental regression and its identifica-
tion
2.1 Definition

We denote by S = (Y,Z,W) a random vector partitioned into ¥ € R,
Z € RP and W € RY. The probability distribution on S is characterized by
its joint cumulative distribution function (cdf) F. The subvectors Z and W



may have some elements in common. We assume that the first coordinate
of S, Y is square integrable. This condition is actually a condition on F'
and F denotes the set of all cdf satisfying this integrability condition. For
a given F' we consider the Hilbert space L%, of square integrable functions
of S and we denote by L%(Y), L%(Z), L%(W) the subspaces of L% of real
valued functions depending on Y, Z or W only. Typically F' is the true
distribution function from which are generated the observations and these
L% spaces are related to this distribution.

In this section no additional restriction is maintained on the functional
spaces but more conditions are necessary, in particular for the analysis of
the asymptotic properties. These restrictions will only be introduced when
necessary.

Definition 2.1 : We call instrumental regression any function ¢ € L%(Z)
which satisfies the condition:

Y=¢0(Z)+U, E[U | W]=0. (2.1)
Equivalently ¢ corresponds to any solution of the functional equation:
ElY —p(Z2)|W]=0. (2.2)

If Z and W are identical, ¢ is equal to the conditional expectation of
Y given Z, and then it is uniquely defined. In the general case, additional
conditions are required in order to identify uniquely ¢ by (2.1) or (2.2).

Example 2.1: We assume that S ~ N(p,X) and we restrict our attention
to linear instrumental functions ¢, ¢(z) = Az + b. Conditions (2.1) are
satisfied if and only if AXzw = Zyw, where Xy = cov(Z, W) and Zyw =
cov(Y,W). If Z and W have the same dimension and if ¥ zy is non singular,
A= ZYWEE%,V and b = py — Ap;. We will see later that this linear solution
is the unique solution of (2.2) in the normal case. If Z and W do not have the
same dimension, more conditions are needed for existence and uniqueness
of ¢.

Example 2.2: We assume that Z and W have both a discrete support
{1,2,..., K'}. In this case, conditions (2.1) amount to a system of K equations
about the K possible unknown values of ¢. It is a Cramer system if and only
if the K x K matrix giving the conditional probability distribution of Z given
W is non singular.

It will be useful to introduce the two following notations:
i) Tp : LE(Z) = LE(W) ¢ — T (¢) = Elp (2) | W],
ii) T : LH(W) — LE(Z) ¥ — T (¥) = E[y (W) | Z].



These two linear operators satisfy:

(P (2),v(W)) = Elp(2)¢ (W) =(Tp(w) W),y (W))
(0 (2),Tr(®¥) (2)),

and then T} is the adjoint (or dual ) operator of T}, and reciprocally. Using
these notations, ¢ corresponds to any solution of the functional equation:

Alp, F) = Tp (¢) =rp =0, (2.3)

where rp (W) = E[Y | W]. This implicit definition of the parameter of
interest ¢ as a solution of an equation depending on the data generating
process is the main characteristic of the structural approach in econometrics.
In our case note that equation (2.3) is linear in .

Remark 2.1: The spaces L%(Z) and L% (W) are defined for given prob-
ability distributions of Z and W. We may be led to change the reference
probability measures to restrict ¢ to belong to a subset of L%(Z ) and to al-
low 71 to be in a space larger than L%(W) In particular, this modification
will be necessary in order to consider non compact supports and distribu-
tions with density not bounded from below by a strictly positive number.
The main complexity introduced by this change is the modification of the
dual operator T%.. For this reason, this extension is not considered in the
paper and is just sketched in Appendix C.

If the joint cdf F' is characterized by its density f(y,z,w) w.r.t. the
Lebesgue measure, equation (2.3) is an integral Fredholm type I equation:

fzw) z =rp(w
[ ftmi: = o) 24

where 7 (w) = [ y—J}((y;‘)’)) dy.

The estimation of a function by solving an integral equation is a usual
problem in nonparametric statistic. Indeed the estimation of the density
function g itself of a random variable Y can be seen as the resolution of:

/ 9T ey = G(y), (2.5)

where the cumulative function G is replaced by its empirical counterpart.
However the estimation issue of ¢ from (2.4) is even more difficult than the
estimation of g defined by (2.5) since:

i) on the one hand, Hardle, Linton (1994) explain that (2.5) is an ill-posed
inverse problem whose necessary regularization leads to a nonparametric
speed of convergence of the estimator of g deduced by (2.5) from the empir-
ical cumulative function which is a root-N consistent estimator of G.



i7) on the other hand, the inverse problem (2.4) is not only ill-posed (see
Section 3 below) but its inputs for statistical estimation of ¢ are nonparamet-
ric estimators of the functions f and 7, which also involve nonparametric
speeds of convergence. However a contribution of this paper will be to show
that the dimension of W has no negative impact on the resulting speed of
convergence of the estimator of . Roughly speaking, increasing the dimen-
sion of W increases the speed of convergence. The usual dimensionality
curse in nonparametric estimation is only dependent on the dimension of Z.

2.2 Identification

The cdf F' and the regression function ;. are directly identifiable from the
random vector S. Our objective is then to study the identification of the
function of interest ¢. The solution of equation (2.3) is unique if and only if
T is one to one (or equivalently the null space N (T}) of Tp is reduced to
zero). This abstract condition on F' can be related to a probabilistic point
of view using the fact that T} is a conditional expectation operator. We
introduce the following definition.

Definition 2.2 : A random vector U 1is strongly identifiable by a random
vector V' if we have E[Yp (U) | V] =0 a.s. =1 =0 a.s..

This concept is well-known in statistics and corresponds to the notion of
complete statistic® (see Lehman, Scheffe (1950), Basu (1955). A systematic
study is made in Florens, Mouchart, (1986), and Florens, Mouchart, Rolin
(1990), Chapter 5 under the name of strong identification (in a L? sense) of
the o-field generated by the random vector U by the o-field generated by
the random vector V. Definition 2.2 implies the following obvious result:

Proposition 2.1 : ¢ is identifiable if and only if Z is strongly identifiable
by W.

The characterization of identification in terms of “completeness of the
conditional distribution function of Z given W” was already provided by
Newey, Powell (2000). They also discussed the two particular cases detailed
in examples 2.3 and 2.4 below. Actually the strong identification assumption
can be interpreted as a nonparametric rank condition as it is shown in the
following example dealing with the normal case.

Example 2.3: Following Example 2.1, let us consider a random normal
vector (Z,W). The vector Z is strongly identifiable by W if one of the three
following equivalent conditions is satisfied (see Florens, Mouchart, Rolin

(1993)):

%A statistic ¢ is complete in a probability model depending on @ if E [\ (¢) | 8] = 0 V0
implies A (¢) = 0.



)N (Ezz) =N (Ewz);
’LZ) N(sz) C N(EZZ — Ezwzawzwz);
’LZZ) Rank(Ezz) = Rank(EWZ).
In particular, if Xz is regular, the dimension of W must be greater or
equal to the dimension of Z. If the joint distribution of (Y, Z, W) is normal

and if a linear instrumental regression is uniquely defined as in Example 2.1,
then it is the unique instrumental regression.

Example 2.4: If Z € {aq,....,a} and W € {by,....,b;} are discrete, and if
P is the [ x k matrix of conditional probabilities of Z given W, then strong
identification is equivalent to Rank(P) = k.

Despite the abstract character of Proposition 2.1, this identification con-
dition can be checked in specific models (see e.g. Ai, Blundell, Chen (2001)).
It can also be interpreted in terms of operators related to T as shown by
the following corollary?.

Corollary 2.1 : The three following conditions are equivalent:
i) @ is identifiable;
1) TpTy is one to one;

iii) R(Ty) = L%(Z), where E is the closure of E C L%(Z) in the Hilbert

SENSE.

We will now introduce an assumption which is only a regularity condition
when Z and W have no element in common. However, this assumption
cannot be satisfied if there are some elements in common between Z and
W. This latter case will be considered in Paragraph 2.3.

Assumption A.1: The joint distribution of (Z,W) is dominated by the
product of its marginal distributions, and its density is square integrable
w.r.t. the product of margins.

Assumption A.1 amounts to assume that T}, and 77, are Hilbert Schmidt
operators, and is a sufficient condition of compactness of Ty, Tf, T T and
TiTy (see Lancaster (1968), Darolles, Florens, Renault (1998)). Therefore
there is a sequence of non negative real numbers \g =1 > A1 > A9 and two
sequences of functions ¢;, i > 0, and ¢, j > 0 such that (see Kress (1998),
15.4):

i) ¢;,1 > 0,1s an orthonormal sequence of L.(Z) (i.e. {@; (Z),¢; (Z)) = b3,

i,7 > 0, where 6;; is the Kronecker symbol) and Yj, j > 0, is an orthonormal
sequence of L4 (W).

1 All the proofs are given in Appendix A.



it) TypTrlp; (Z)] = N¢; (2), i > 0;

iti) TrTp[; (W)] = Ny (W), i > 0;

W) ¢o (Z) =1, ¢y (W) =1

v) (@i (Z) ,0; (W)) = Nibij, i,j = 0;

vi) Vg € L3 (2), 9(2) = 3-720(9 (2) , 9 (2))¢; (2) + g, where g € N (Ty) ;
vii) Vh € L3 (W), h(w) = 332 o(h (W) ,4b; (W))4); (w)+h, where h € N(T?)

1

Similarly we obtain the decomposition of the joint density f(.,z,w) of
random variables Z and W from the eigenfunctions and eigenvalues

flzw)=f(,2z.)f 1+ZAM ¥, (w)]. (2.6)

Actually, it can even be shown (see Kress (1998), 15.4) that for all :

Tre; = Ny,
Ty = N
and then:
Trlg(2)] (w) = E[g(Z2) W = w] Z/\ <9(2),¢i(Z) > ; (w),
and
Tr [h(W)](2) =Eh(W)|Z = 2] = ZA <h(W), i (W) > p;(2)-

The statistical interpretation of these expansions is the following. If
one considers an ordered sequence of eigenvalues \g > A1 > ... > Ay, the
truncated sum SN X\ (g (Z) , ¢; (Z)) 1;(w) is the best L*-approximation of
E[g(Z) | W] by an affine fonction on the nonlinear functions v; (W) of W.
In other words we are looking for the best nonlinear instruments (see the
Best Nonlinear Two Stage Least Squares by Amemiya (1975). The ordering
of the eigenelements is not needed for the asymptotic theory we propose in
this paper but it is clearly useful for small sample performance (see Darolles,
Florens and Renault (1998)).

The strong identification assumption of Z by W can be characterized
in terms of the singular values decomposition of T}. Actually since ¢ is
identifiable if and only if T*TF is one to one we have:



Corollary 2.2 : Under assumption A.1, ¢ is identifiable if and only if 0 is
not an eigenvalue of TjT},.

Note that the two operators TpTy and T Ty have the same non null
eigenvalues. But, for example, if W and Z are jointly normal, 0 is an
eigenvalue of T, T} as soon as dim W > dim Z and X is non singular®. But
if Xy 7 is full-column rank, 0 is not an eigenvalue of THTF.

The strong identification assumption corresponds to A\; > 0 for any ¢ and
it characterizes a strong dependence between the two random variables. In
particular we can directly deduce the Fourier decomposition of the inverse
of ThTy from the one of THTY.

2.3 The variables in common case

We now assume that Z and W become (Z, X') and (W, X ) respectively, where
Z, X and W have no element in common. The condition (2.1) becomes:

Y =¢(Z,X)+U, E[U|X,W|=0. (2.7)

The last condition could be extended to E[U | X,W| = E[U | X]| (see
Florens, Heckman, Meghir, Vytlacil (2001)), but this case will not be ana-
lyzed here.

The general identification condition given in Proposition 2.1 remains
true if it is stated conditionally to the exogenous variables X (see Florens,

Mouchart, Rolin (1990), 5):

Proposition 2.2 : ¢ is identifiable if and only if Z is conditionally strongly
identifiable by W, given X, that is if:

EW(Z,X)| X,W]=0as =1=0a.s.

Unfortunately, the methodology put forward in this paper cannot be
fully extended to this general case since the variables in common X prevent
the conditional expectation operator of (Z, X) given (X, W) to be an Hilbert
Schmidt operator (Assumption A.1 is no more fulfilled).

However, we are going to be able to extend our methodology to some
separable cases of the following form:

L

0 (Z,X) = a(X)+>_ B (X) v Z0), (2.8)
=1

where Zy, £ = 1,...,L, are subvectors of Z with no elements in common.
Note that (2.8) is quite general since it encompasses in particular the class
of additive models (L = 1, 3, (X) = 1) which are widely used for dealing

°In this case a’Swz = 0= T5 (a'W) = 0.



with the curse of dimensionality. The case of discrete explanatory variables
Z (treatment models, see e.g. Abadie (2001), Das (2001)) is also nested in
(2.8), with Zy, £ =1, ..., L being a collection of binary variables.

The basic idea of the extension of our inference methodology to the
general setting (2.8) is the cancellation of the role of the variables in common
X by the following regression equation:

L

Y —EY | X] = 8,(X) (0e(Ze) = E ve(Ze) | X))+ U. (2.9)
(=1

Therefore, the estimation of such additive multiplicative instrumental re-
gression model will combine inversions of regularized conditional expectation
operator and backfitting. The technical details of this extension are beyond
the scope of this paper and only the no variables in common case will be
explicitly considered in the following sections. It is nevertheless worthwhile
to notice that the identification issues are easy to address in the general
setting (2.8).

First, it allows us to weaken the identification assumption of proposition
2.2.

Definition 2.3 Z is conditionally linearly identifiable by W given X if for
any family (N, (X),p; (Z)) i = 1,...,n of square integrable functions:

Z)\i (X) Elp; (Z) = E(p; (2) |X) | X, W] =0 a.s.

i=1

n

=D N (X)[pi(2) — E(pi (2)|X)] =0 as

Of course, if the random variable X is degenerate, conditional linear
identification is askin to strong identification of Z by W. But in general,
conditional linear identification of Z by W, given X, is a weaker assumption
than conditional strong identification. To see that this condition is well-
suited to the setting (1.8), let us consider without loss of generality the
particular case L =1 :

¢(Z,X) =a(X)+6(X)y(2), (2.10)

where the function 3 is allowed to belong to a subset B of L% (X).
Typically, B contains only the constant functions in the particular case of
additive models. To deal with non constant functions 3 we need to extend
a concept of measurable separability:

Definition 2.4

10



(i) Two random vectors X and Z are measurably separable (or variation
free) if any function of X a.s. equal to a function of Z is a.s. constant.

(ii) Two random vectors X and Z are B stongly measurably separable if
or any b,c,d in , an respectively and for an
y byc,d inl2 (X),L%(Z) and L% (Z wely and y
B € B, the almost sure equality:

B(X)e(2)=b(X)—-d(2),
implies that
- Either 3 and b are constant

- or ¢ and d are constant

The first concept of measurable separability has been introduced by Flo-
rens, Mouchart and Rolin (1990). The second concept is stronger in general
insofar as BB contains some constant functions. A counterexample is provided
in Appendix E to show that the two concepts are not equivalent. However,
B-strong measurable separability amounts to measurable separability when
B contains only constant functions. Moreover, if it were possible to differ-
entiate the identity B(x)c(z) = b(z) — d(z) with respect to real variables
x and z, it could easily be shown that measurable separability implies 5-
strong measurable separability.

Conditional linear identifiability and B-strong measurable separability
are sufficient to identify the instrumental regression function (2.10) up to
some normalisation conditions:

Proposition 2.3 Let us consider the instrumental regression function de-
fined by:

¢(Z,X) = aX)+BX)v(2),
(o, B,7) € AxBxC,

if A,B,C satisfy:
(i) For any 3, B* € B,

P[B(X) =0 =0,

3*/B € B,

JaeR [*=cf=c=1.
(ii) For any v,v* €C,

0¢¢C,

JaeR y*=7+a=a=0.

11



(iii) When C contains some constant functions, A contains only the null
function

(iv) X and Z are B-strongly measurably separable,

Then, when Z is conditionally linearly identifiable by W, given X, the
function o, B and v are identified.

3 Existence of the instrumental regression: an ill-
posed inverse problem

A linear inverse problem is defined by two linear spaces G, H, and by an
equation:

Lg=nh, (3.1)

where g € G, h € H, and L a linear operator from G to H. This equation
must be solved in ¢. If there is a continuous inverse operator L~!, the
problem is said a well-posed inverse problem. If L~1 does not exist or is
not continuous, the inverse problem is said an ill-posed one. Non existence
of inverse means that no solution exists and non continuity implies that
small perturbations on h may be transformed in large perturbations of the
solution.

Ill-posed inverse problems receive a great attention in the literature (see
e.g. Wahba (1973), Nashed, Wahba (1974), Tikhonov, Arsenin (1977),
Groetsch (1984), Kress (1998). Recent surveys of applications of inverse
problems in statistics are Van Rooij, Ruymgaart (1999) or Vapnik (1998).
For econometric applications see e.g. Carrasco, Florens (2000a) and Flo-
rens (2000). In finite dimension, linear operators are continuous, but this
property disappears in infinite dimension. Moreover, if L is a continuous
one to one compact operator from G to GG, the range of L can be equal to
G only if G is finite dimensional. We will see that in general the solution
of problem (2.3) does not exist (overidentification problem). The inversion
problem is extended to generalized inverses which are not continuous. Then
this solution is transformed into a regularized solution.

3.1 Overidentification

Equation (2.3) admits a solution if and only if the regression function r
belongs to the range of Tf,. Basically this is a property of the cdf F. So we
introduce the subset of cdf satisfying it:

FO={FecF:rp € R(Tp) and N(Ty) = {0}}.
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If F € F° the equation (2.3) has an unique solution:
o="Tp'rp. (3.2)

As already mentioned, under Assumption A.1., the function ¢ can be
computed using Fourier decomposition of any function belonging to L%(Z ).
We obtain:

93 3

=0

TF7¢1 902( )7 (33)

|-

where (rp, ;) = E[rp(W)¢;(W)] = E[Y¢,;(W)]. The assumption F € FY
implies that the series (3.3) converges in L? sense. We introduce a well
specification hypothesis.

Assumption A.2: The data generating distribution F is an element of F°.

However, with usual estimators iy of F which are of finite rank, for any
N, Fy does not belong to F° because the null set of T Py is not reduced to
7ero.

3.2 Generalized inverse

We replace equation (2.3) by:

@ =arg min |A\ F)|J* (3.4)
AeLZ.(Z)

This approach is quite usual and transforms an inversion problem in a
generalized inverse problem. It is also standard in overidentified models to
replace an exact condition by a minimization problem: this is the case in the
GMM analysis. We do not discuss here the optimality of the transformation
of an exact relation to a minimization problem. This question becomes
difficult in the infinite dimensional case (see e.g. Carrasco, Florens (2000a)).

To ensure the existence of a solution for (3.4), we introduce the following

set of cdf:
F*={FeF :rpeR(Tp) +NTg)}.

For any F, 1, € R(T)+N(T%) = L%(W) and then F* may not contain
distribution such that R( 1») is not closed. However by definition, 70 C F*
and then the true cdf is in F*. Usual estimators of F' determine operators
T, with finite dimensional range (and then close) which are also elements
of F*. To ensure uniqueness of the solution of (3.4), we consider the Moore-
Penrose generalized inverse:

13



Proposition 3.1 : For any F in F*, there is a unique function ¢ (still
called the instrumental function) of minimal norm, solution of the opti-
mization problem (3.4). This solution may be decomposed in:

o) = 3 e e (2). 35
i/A£0 "

A proof can be founded e.g. in Luenberger (1969) 5. Actually it is
easy to check that, under our identification condition, the Moore-Penrose
generalized inverse amounts to solve the following equation which is implied

by (2.3):

Example 3.1: Let us continue Example 2.3. in the normal case with non
singular variance matrix. If dimW > dim Z, a solution of Try = rp ex-
ists only under a particular assumption on the variance matrix. If this
assumption is not satisfied we can solve the minimization problem (3.4).
We first look for a solution of this problem in the class of affine func-
tions p(Z) = AZ + b. In this class a unique solution to (3.4) is given
by: A= (X, S Zwz) s S Swys and b = py — Apy. Actually,
we get with this function the only solution of (3.4) for the following two
reasons:

i) Az + b satisfies the condition (3.6);

i1) TrT} is one to one since rank Xy, is equal to dim Z (this follows from
Corollary 2.2).

Example 3.2: Let us consider a binary endogenous variable Z € {0,1}.
The instrumental regression must satisfy: ¢(0)(1 — p(w)) + ¢(1)p(w) =
E[Y | W = w|, where p(W) = P[Z =1 | W]. The model is identified if
p(W) is not constant and the F such that ¢ exists is characterized by the
property: E[Y | W = w] is an affine function of p(w). Thus, the solution
of (3.6) is obviously ¢ (2) = ¢ (0) + (¢ (1) — ¢ (0)) z, with ¢ (0) and ¢ (1)

characterized by the two following equations’:
¢ 0) +(p(1) =9 (0)Elp (W) | Z = 2] = EIE[Y | W]| Z = 2],

for z =10, 1.

% An additional extension could be obtained using Picard’s theorem (see e.g. Kress
(1998), p. 279). If rF is not in R(Tx) + N(T%), but in R(T}), the solution ¢ given in
(3.5) may still be used if the serie converges in L? (i. e. Y. A\7%(rp, ;) < co). This
extension does not seem relevant for our analysis because the F' we consider is assumed
to be in F° (the true distribution) or with a finite range (the estimator).

"This method can easily be extended to the case with exogenous variables X in com-
mon. In this case, the two unknown ¢ (0) and ¢ (1) are function of X. With obvious
notations, the two equations becomes: @y (z) + (¢ (x) — ¢ (2))E[p(W) | Z = 2, X =
z]=E[EY | W=w,X=2z||Z=2X=x],z=0,1.

14



3.3 Ill-posed problem regularization

Except in the particular cases where we can restrict ¢ to belong to a finite
dimensional space (see Examples 3.1 and 3.2), the initial problem (2.3) is an
ill-posed problem for a general F' because T is not invertible. If F' € F* we
have defined a solution by (3.5) but the problem remains ill-posed because
the solution is not continuous in rp. For example if rp is perturbed in
rp + 61; (with ¢ arbitrarily small), the perturbed ¢ is equal to ¢ + )%1/12
which can be very large because \; — 0. (for details see Tikhonov, Arsenin
(1977) or Kress (1998)). We need to define a regularized solution to our
problem which satisfies a continuity condition®.

A first way to regularize the solution is to truncate the sum in (3.5). As
the eigenvalues are ranked in a decreasing order, we can keep only the first
k + 1 eigenvalues:

k
P2 =Y e ). (.7

We can also eliminate the eigenvalues that are smaller than a given
threshold (spectral cut-off or thresholding regularization):

M= Y e e). 39

iAi>As

It is worth noticing that the way chosen by Newey, Powell (2000) to
circumvent the problem “by restricting the set © over which estimation is
carried out to be a compact subset of a normed set of functions” (when ©
denotes the set of possible solutions ¢) might be interpreted as a type of
regularization (for regularization by compactification see Tykhonov, Arsenin
(1977)). In this paper we use a different regularization, called Tikhonov
reqularization. The initial problem Trp = rp is transformed in:

(al +TpTp)e® =rF, (3.9)

where a > 0 is a given number, and 7}, = Trr . This equation is an integral
Fredholm type II equation which can be written (in the case of a dominated
probability) as:

ap® (z) + /(pa (u) a(u,z)du= /yb(y,z)dy, (3.10)

where:

[ fGuw) f(Lz,w) w
a(u,z)—/ e e, (3.11)

(., 2,.)

®This continuity condition is necessary to deduce a consistent estimator of ¢ from a
consistent estimator of rp.
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and

[ few) fozw)
b(y,z)—/f(_’_7w) . (3.12)

Under Assumption A.1. the solution of (3.9) can be computed using
Fourier decomposition. We obtain:

“ zZ) = : D) TF?’d)’L’ i Z). 313
o @) = Y e o) (313)

For a fixed a, the problem (3.9) is well-posed. Indeed (ol + T3Ty)~! is
bounded since ||(af +T5Ty) || < 1, and then continuous. Moreover, when
a goes to 0, ¢ converges in L? to ¢ (see Kress (1998), 15.5).

We can interpret the Tikhonov regularization as a penalized version of
the optimization problem (3.4), i.e:

% =arg min ||A()\,F)||2 + a||)\||2. (3.14)
AeLZ.(Z)

4 Statistical Inverse Problem

4.1 Estimation

The joint distribution of (Y, Z, W) is not known and is estimated from the
observations of a sample of this random vector.

Assumption A.3: The data (Yn,2n,wr), n =1,..., N, define an i.i.d sam-
ple of (Y, Z,W).

This independence is a simplifying assumption and could be extended to
weakly dependent (stationary mixing) observations.

We estimate F' using a kernel smoothing of the empirical distribution.
The estimator Fy is defined through its density w.r.t. the Lebesgue measure:

N
1
vy, zw) = N ZKyyhyN (y — yn)szth (z — zn) K hyn (W —wn),
n=1

where Ky, K., K,, are respectively 1, p, and q dimensional kernels, hyn, h.n,
hyn are three bandwidths, and for example K, j,_ (z — 2z,) = h VK. ((2 —
zn)/hzn). In the applications, the bandwidths differ, but they are all the
same speed represented in the following by the notation hy. We associate
to Fiy estimated operators TFN and T;;N. These operators are not one to
one and have a finite dimensional range.

In the same way F can be replaced by Fy in all the Fourier decompo-
sitions presented previously to obtain an indirect estimator of ¢. In most
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usual inverse problems, the right hand side of the equation Lg = h is ob-
served with errors or estimated but the operator L is perfectly known. In
our problem both L and h are unknown and estimated. In other words, we
are faced with the stochastic ill-posed problem as in Vapnik (1998), 7. The
implications of the unknown character of L may be seen in particular in the
discussion of Assumption A.5 (see Appendix B).

Definition 4.1 : If oy is a positive N -dependent number, we call estimated
instrumental regression function the (uniquely defined) function:

PN (2) = (anT + T;NTFN)*T;N, (4.1)

: * ok R
with Ty = TFNTFN'

Equivalently the estimated instrumental regression function ¢ satisfies
the integral equation:

an PN (2) + / B (u)ay (u, 2) du = / YN, 2)dy,  (42)

where @, (u,2) and by (y, z) are the kernel estimators of a (u,z) and b(y, 2)
introduced in Subsection 3.3. This estimator can be computed directly as a
solution of (4.2) and it reduces to a finite dimensional inverse problem. The
practical implementation of this computation is detailed in Appendix D.
Note that the computation of estimators of A;, ¢;, ¥;, are not required and
the asymptotic properties of @?VN do not rest upon the asymptotic proper-
ties of the estimators of eigenvalues and eigenvectors (see Darolles, Florens,
Gouriéroux (1998) and Chen, Hansen and Scheinkman (2000) for a state-
ment of these later properties).

Estimation of the instrumental regression function requires consistent
estimations of T T} and r%. The main objective of this section is to derive
the statistical properties of the estimated instrumental regression function
from the statistical properties of the estimators of ThT}y and r.. We use
kernel smoothing techniques to make the paper more user-friendly, but we
can generalize the approach and use any other nonparametric techniques
(for a sieve approach, see Chen, Shen (1998)). The main point is the speed
of convergence of the norms given for kernel smoothing by Assumptions A.4
and A.5 below.

4.2 Consistency and speed of convergence

Usual nonparametric estimation is essentially focused on the estimation of a
function at a particular value of the variables. In our case, the nonparametric
estimates are used as elements of a functional equation which must be solved,
in order to estimate the functional parameter of interest.
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Consistent estimation of this function then requires that T;f, TFNSO and
N
7, converge globally to their limit (see e.g. Kress (1995), 15). A natural
type of convergence is in quadratic mean, that is, in L%(Z ).

Assumption A.4: There exists p > 2 such that’ VA € L% (Z):

1 2 2
||(T* T —TETR)A|* = << +h P) 1B >
NBE N

Assumption A.5: There exists p > 2 such that:

1
* * 2 2p
|’r‘A —_ Z N Z R SOH O<_+hN> .

We show in Appendix B that standard regularity conditions on the true
F and on ¢ imply that Assumptions A.4 and A.5 are satisfied. Typically,
in the case of kernel estimation, p will be the minimum between the order
of the kernel and the order of differentiability of f. In other words, the rate
of convergence appearing in Assumption A.5 in the same than the rate of
convergence of the kernel estimations of T* 2 For simplicity, we consider
the same p in Assumptions A.4 and A.5. ThlS condition is satisfied if we
take the minimum in case of different values of p.

As already announced, the curse of dimensionality is binding only with
respect to the dimension p of Z and not with respect to the dimension ¢ of
W. Actually, we will see now that for the purpose of estimation of ¢, larger
is the range of T}, that is richer is the set W of instruments, better it is.

Convergence property of Q)?VN is deduced from the following decomposi-
tion:

PN — o= (OZNI’*‘TENTI%N)_I[T{ - T* T: ¢l

P Py
+ [(anI + TENTFN)_ITENTFN — (anI + TpTp) ™ T Tple
T =,

where ¢V is defined in (3.9). Then:

o — = (I +T; TAN>—1[T; ~TE Ty ¢
—(anI + T}, Ty, )T Tp — TeTel(@™ — )
+ @™ =,
using

(anI +TpTp) 'T5Tr =1 — ay(ayI + TpTp)

9All the O () are actually relative to the true data probability distribution.
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and, as a consequence:
P — ¢ = ay(ayl +TiTp) 'e. (4.3)

The above decomposition emphasizes the three elements of the difference
between @%N and . The first term is due to the estimation of the right hand
side rp of the equation T = 7. The second one is due to the estimation
of the operator T, and the last one come from the regularization.

Let us remark that ||(al + TFT’NTF"N)AHQ < 1/a3; (see e.g. Groetsch
(1984)) and recall that ay — 0 implies ||V — ¢|| — 0 by virtue of the
identification assumption (see e.g. Kress (1998)). Finally, we obtain the
following theorem.

Theorem 4.1 : Under Assumptions A.1-A.5,

i) e — ol
2 2
=0 (& (F+1) + & (s + 1) leo = olP + g™ = oI?)

i) if ay — 0, K /0% — 0, ~ O(1), then |G — @] — 0 in
N N
probability as N — oo.

A natural question concerns now the selection rule of the two regulariza-
tion parameters a; and hy in order to optimize the speed of convergence
of @3N to .

As shown by A.4 and A.5, hy has to be seen as a smoothing parameter
for the nonparametric regression on Z of the variables rr and Tr¢. The
convergence to zero of the regularization parameter apy will ensure the con-
vergence of ¢, towards the true unknown ¢ at a rate depending upon the
richness of the set W of instruments. We choose to measure this richness
directly through the speed (3 of convergence of p™*N towards ¢:

Definition 4.2 : For 0 < 3 < 2, @4 is the set of functions ¢ of L%(Z)
such that:

™ — 2 = O(ay).

We will say that ®3 is the set of functions - instrumentalizable by W.
Note that is ¢ is S-instrumentalizable by W, it is a fortiori ’-instrumentalizable

for 3/ < 3.

To understand Definition 4.2, it is worthwhile to refer to the following
decomposition resulting from (4.3):

oo 2
an _ 12 — AN 2 4.4
1% |l ]E:o a?v+2aN/\§+/\§*<%%> ; (4.4)
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which implies that ||o®¥ — ||? is not greater than the sum of anyone of the
following two series:

> (o, 0;)?

a?\,z—xf , (4.5)
§=0 J

and

0 2

ay o (,¥))

NN 4.

2 ; A2 (46)

Since )\? define the j-th squared nonlinear canonical correlation between
W and Z (see e.g. Lancaster (1968) and Darolles, Florens, Renault (1998)),
the convergence of these series means that these correlations are sufficiently
large, that is that the instruments are sufficiently rich. In the best favorable
case, we have:

%) 2
Z <<Pa)\<jg> < +o0,
j=0 7

and § = 2. This is of course the case in particular if the function ¢ is
spanned by a finite set of canonical variables ;. This implies that any ®4 is

dense in L2 (z). But a more general case!” is:

[e.°]

\2
Z <907)\9Z]> < +OO,
j=0 J

which allows us to choose 3 = 1. Note that this last condition is in particular
fulfilled if ¢ belongs to the range R(T}:) of T} since in this case:

(0,002 = (Tj 11, 05) = X3, 0;)2,

and
(o) &
S EE =Y ) =
=0 J j=0

To conclude, instrumental regression needs a sufficiently rich set W of
instruments at two stages:

i) on the one hand, as shown by Corollary 2.1, the range R(T}:) that is the
space of functions of the form E [ (W) | Z], has to be dense in L% (Z) to
identify the instrumental regression ¢.

10We thank W. Newey for drawing our attention on this general case.
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ii) on the other hand, if this range is equal to L% (Z) (as in the finite
dimensional case) or at least contains the true unknown ¢, then the rate /3
of convergence towards ¢ of the sequence of its Tikhonov regularizations is
not smaller than one.

This last remark extends the notion of weak instruments as proposed by
Nelson, Startz, Zivot (1998), Straiger and Stock (1997) and Wang and Zivot
(1998). With 3 as measure of the richness of the instruments, we will say
that weak instruments correspond to 3 smaller than one. Of course, for a
given function ¢,one will try to define a set W of instruments such that ¢
is B-instrumentalizable for some § > 1.

Generally speaking, the existence of 3 guarantees a minimum rate of
convergence of our estimator 3V towards ¢ for a convenient choice of the
regularization parameter hy and ay.

Theorem 4.2 : Under Assumptions A1-A5, we get:
£
N7 o — ¢l =0(1),
if o € P, 2% S% and

__1
aN:klN 2+,8’

1
hN == k'QNiZ_p;
where k1and ko are constant terms.

Note that Theorem 4.2, which is a direct consequence of Theorem 4.1 i),
provides only a lower bound to the rate of convergence while the actual one
should be greater than 5% Several remarks about the underlying trade off
are worth noticing:

i) The rate % is optimal with respect to the bound!! provided by The-
orem 4.1 7). The leading term of the convergence is then provided by the
estimations of r} and by the regularization. This speed of convergence is
not influenced by the statistical uncertainty about the operator T3T} that
one has to invert.

1) To get this “optimal” rate of convergence, we have undersmoothed the

1
estimation of 77T}, by choosing hy, = N 2¢ instead of the larger one hy =

Y The true optimal choice of oy and hy, which would have considered directly
63N — ¢l and not its upper bound given by Theorem 4.1 would have depended on
the behaviour of the sequences A; and <g0,g0j>. This is apparent from the asymptotic
probability distributions derived in the next subsection.
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N ~5r which would have been optimal for the non parametric estimation of
TyTy. The resulting higher variance of T;;NTﬁN has a negligible cost for the
purpose of the estimation of ¢ with respect to the two other costs: statistical
uncertainty about r}. and regularization bias. Actually, a larger A, would
have increased the bias of the estimator of 7}, and deteriorated!'? the global
rate of convergence of ¢, towards ¢.

1i1) Theorem 4.2 requires a relation between the degree of smoothness p
of the density and 3 which can be interpreted as the identifying power of
the instruments about . This relation is in particular satisfied in the case
p=1l,p=2and B=1.1f p=2 and =1 p must be greater or equal to 3.

iv) Greater 3 is, faster is the obtained convergence of 3N towards ¢. In

the most favorable case (i.e. § = 2), one gets |} — ¢l = O(N_%) that is
a convergence twice slower than in the parametric case.

Actually, as expected, the “optimal” rate % is in general smaller than

the rate of convergence p—ig—p that one would have obtained through a stan-
dard nonparametric regression of Y on the p variables Z. The inequality
p—_%_g—p > % is in particular guaranteed if p < 2p (since 3 < 2).

4.3 Asymptotic probability distributions

For economic applications, one may be interested either by the unknown
function ¢(Z) itself, or only by its moments, including covariances with
some known functions. These moments may for instance be useful for testing
economic statements about scale economies, elasticities of substitutions, and
SO on.

For such tests, one will only need the empirical counterparts of these
moments and their asymptotic probability distribution. An important ad-
vantage of the instrumental variable approach is to allow to estimate the
covariance between ¢(Z) and §(Z) for a large class of functions. Actually
our identification assumption amounts to ensure that the range R(T}) is
dense in L%(Z) (see Corollary 2.2) and for any § in this range:

3 € LE(W), 6(2) = Elp (W) | Z],

and then Cov[p(Z),6(Z)] = Cov[p(Z), E[¢ (W) | Z]] = Cov[p(Z),¢ (W)] =
Cov[E[p(Z) | W],¢ (W)] = CovlY, 4 (W)], can be estimated with standard
parametric techniques. For instance, if E[§(Z)] = 0, the empirical counter-

120f course, one could also choose for the estimation of TpTr a bandwidth hy different
from the one used for estimating r%. But, this would not improve the global speed of

convergence of ¢*N to .
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part of Cov]Y, ¢ (W)], i.e.:

1 N
n=1

is a root-N consistent estimator of Cov[p(Z),6(Z)], and:
N
VI |55 St (wn) — Covlp(2), 8(2)] | 4 A0, Varly (W),
n=1

where Var[Y+ (W)] will also be estimated by its sample counterpart's.
However in practice this analysis has very limited interest because even
if 6 is given, v is not known and must be estimated by solving the inte-
gral equation 6(Z) = E[¢(W) | Z], where the conditional distribution of W
given Z is also estimated.

Then the real problem of interest is to estimate Cov[p(Z),6(Z)], or
(p,6) by replacing ¢ by @?VN to derive the asymptotic distribution of this
estimation procedure.

We slightly simplify our analysis if we introduce an homoskedasticity
assumption.

Assumption A.6: The error term is homoskedastic: Var[U | W] = .

Moreover, since our estimator ¢ is defined as the solution of the equa-

tion:

(anI+ T Tp ) =T s

its asymptotic behavior depends upon the right hand side TI’; TEy of this
N

equation. This right hand side involves two nested standard functional es-
timations whose study is not the focus of interest of this paper. This is the
reason why we will only maintain a natural assumption about it:

Assumption A.7: For a suitable choice of hy,

VN(T} v, = Tg Tp @) = N(0,0°TET).

3For the purpose of interpretation, it is worthwhile to relate this total variance to the
underlying regression equation:

Var[Yy (W)] = Var[p(Z) (W)] + E[(U? + 2U(Z))3* (W),
that is

VarlYy (W)] = Varlp(Z)¢ (W)] + E[p* (W) Var[U|W]]
+2E[4* (W) Cov|U, o(Z)|W]].
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The previous convergence is a functional convergence in distribution in
the Hilbert space L2%(Z) (see e.g. Van der Vaart, Wellner (1996)). Appendix
B shows that this assumption is satisfied under regularity conditions on the
data density.

Our proof requires a lower bound condition on this density. This con-
dition can be avoided under some technicalities which modify in particular
the asymptotic variance operator of the normal distribution. This extension
is considered in Appendix C.

We have simplified the asymptotic distribution by assuming a zero mean
which is obtained by choosing h, decreasing faster than its optimal value
(hy = O(N~349)) ¢ > 0).

Let us first consider the case where the regularization parameter « is
kept constant. In that case the linear operators (aI—%TI*;NTFN)’l and (al +

1T, F)’l are bounded and, using a functional version of the Slutsky theorem
(see Chen, White (1992)), it is immediately checked that:

VN(@R = ¢ = b%) = N(0,9), (4.7)
where
by = [(al +T5 Ty )7 = (ol + TETE) ™ o,
and

Q=c*(al +TiTe) ' TETe(ad + TETR) L.

Some comments may illustrate this first result:

i) The convergence obtained in (4.7) is still a functional distributional con-
vergence in the Hilbert space L%(Z ), which in particular implies the conver-
gence of scalar product v N(@h — ¢ — b%,6) to scalar normal distribution

N(0, (5, 98)).

1) The convergence of ¢ involves two bias terms. The first bias is ¢® — .
This term is due to the regularization and does not decrease if « is constant.
The second one, by follows from the estimation error of T%. This bias
decreases to zero when N increases, but at a lower speed than v/N.

iii) The asymptotic variance in (4.7) can be seen as generalization of the two
stage least squares asymptotic variance. An intuitive (but not correct) inter-
pretation of this result could be the following: if « is small, the asymptotic
variance is approximately o2 (TI’;TF)_I, which is the functional extension of
o2 (BE(ZW'E(WW") " tE(WZ"))~ L

We now analyze the case when «a, goes to zero. The functional conver-
gence result is not preserved. But asymptotic normality of scalar product is
in general still valid as stated by the following theorem.
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Theorem 4.3 : Under assumptions A1 - A7, ifa%thg’V — 00 and a?v/h?\f —
00, let § € L2(Z) and:

2
sn (6) = HTF (anI + TETr) ™" 5”

1If:
||60¢N — 6” — 0(1) (48)
aN SN (6)
and in particular if 6 € &1, then :
N ey e ey s) = A (0,87) (4.9)
SN (6) N N I
If 6 € ¢pg with B > 1:
N 23 28
= > . .
o) =52 0 (aN N) o N715 (4.10)

1
for any o< N 248,

Let us first stress that v, (6) is a well-defined rate of convergence going
to infinity since:

| Tw(and +TiTp) " 6|1 = — 5 —{p;,6)*
;(%ﬂ”‘?)g !
A 6]
S Z ] 2< E >2 )
=0 QOCN)\] 2aN
and therefore:
200N
vy (6) > ﬁé\ﬁQ — 00.

On the other hand, v, () cannot of course going to infinity faster than
N since, for N sufficiently large, we have:

* —1¢12 J 2
|Tr(an! +TpTp) 0|17 > %m@w&
- /\g 2 1 2
> S ;8% = S ITpol > 0,
=0

since our maintained identification assumption precisely means that T30
cannot be zero for a non zero function 6.
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Theorem 4.3 implies that root-INV consistency is obtained when § € ®,.
As already stressed in the comments about Definition 4.2, 5 contains any
finite dimensional vectorial space spanned by the canonical variates ¢;. On
the other hand, if we only know that § € ®3, 0 < 3 < 2, we have:

(@) =Y (0’

o 2
< FY— s (e0) (4.11)
. o .

In other words, larger values of 3 guarantee larger rates of convergence
vy () = ﬁ(é). The minimal condition (4.8) is implied by § € ®; since it is
the case where |84, — 6]°goes to zero at least as fast as ay.

Let us recall that we were able to propose a root-IN consistent estimator
of Covlp(Z),6(Z)] for any 6 € R (T}). As shown in the comments follow-
ing Definition 4.2, we know in this case that § € ®; but there is no reason
to claim that 6 € ®g for some 3 > 1. The root-IN consistency is obtained
by an estimator 4 SN ynt (wy) of Cov (¢ (Z),6(Z)) which considers the
function v such that

8(Z) = [T;9] (2) = Elp (W) |Z],

as known. The slower speed of convergence provided by Theorem 4.3 is the
price to pay for Tikhonov regularization.

Moreover, all the above discussions on rates of convergence actually de-
scribe some bounds for these rates. This is the reason why the dimensions
of Z and W do not explicitly appear. However, the inequality (4.10) shows

2
that the difference between sy (6) and its upper bound Hé—ag;&hn is tightly
related to the respective behavior of ap, to the shape of the eigenvalues )\;-s
and on the specific choice of 4.

The role of the dimension of the Z variables appears in several places
(choice of the bandwidth, hypothesis of Theorem 4.2). The role of the dimen-
sion of W is less explicit even it is an important element of the asymptotic
behavior of our estimator. Actually the values and the rate of decline of the
Aj ’s depend on the dimension of W, as shown by the following result:

Proposition 4.1 Let us assume that W = (W1, Wa) € R1' xR% (¢ + g2 = q)
and denotes by TF, the operator

¢ € Ly — E (¢|Wh) € Ly,
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and Tp, its dual. Then Ty is still an Hilbert Schmidt operator and the
eigenvalues of Tr, Thy )\?1 satisfies

)\jl < )‘J'

where the eigenvalues are ranked as a mondecreasing sequence and each
eigenvalue is repeated according to its multiplicity order.

Example 4.1 Consider the case (Z,W1,Ws) € R? endowed with a joint

Lop1 po
normal distribution with a zero mean and a variance | p; 1 0 |. The
pa 0 1

operator TiTF is characterized by
2
Zlu~ N ((p? +p3) u, 1 — (pi + ) )

and its eigenvalues )\? are (p% +p§)j. The eigenvalues of Ty Tr1are )\?1 =
(p%)jand the eigenvectors are the Hermite polynomials of the N (0,1) dis-
tribution.

The eigenvectors of Ty T are the Hermite polynomials of the invariant

T . . . 1—(pt+p5
distribution of this transition, i.e. the N | 0, J%Z .
1= (pt+03)

The last question of interest we consider in this section concerns the
behavior of the bias term in Theorem 4.3 for particular choices of ay and
hy. We consider first the square of the bias generated by the estimation of
Tp, ie.:

o (8) (b3, 6)°
= vn(6)(an(an] + TpTp) TETE — T: Tp NanI + TpTg)e, 6)?
||(aNf+T* ) 1<5||2

N

< a%vN

Using the same methodology than in the analysis of the consistency, we
obtain:

(87 1 (e%
on(O)0R812 = 0 (N (g + 180 ) ™™ = oIP)

1 9 3
:O<N< +h”>a>.
Nh?v N N

under Assumption A.6. Consider for sunph(:lty the case p= 1, p =2, and
B = 1. Under the choice hy = kyN ~(3%2) and N = ko N™ 3 thls expression
converges to zeros when N — 00.
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However the regularization bias does not converges to zero. For example

if ¢

= (= 1), vn(§)(VYY, 8)2 = O(Na’) which converges to infinity. This

divergence rate is an upper bound. Indeed, we have:

* -1 2
WO — 8 = SN
(g (ay ] + TpT,)15)°
ITp(an T+ TiT,) o2
(o] + T T,) 6]
Tl + TETp) TP

= a3 N

< o} Nlel®

5 Concluding Remarks

This paper presents an efficient way to estimate nonparametrically a rela-
tion between endogenous variables using an instrumental variables defini-
tion. We also consider asymptotic properties of this estimator and the main
results concern lower bounds of the speed of convergence and the asymptotic
normality of the regularized solution of an ill-posed inverse problem. The
resolution of this problem raises numerous questions:

i

)

i)

)

The choice of the regularization parameter must be discussed. This
choice is similar to the choice of the perturbation parameter in a
ridge regression function; (see Carrasco, Florens (2000b) and refer-
ences there in).

We could adopt others types of regularization of the ill-posed inverse
problem. In particular we regularize the problem if we choose the
instrumental regression function in the set of monotonous functions.
Of course the economic theory must valid this option.

The treatment of several Z variables rises the usual curse of dimen-
sionality problem. Usual technics of dimensionality reduction in non-
parametric regression, such as additive models or index models, may
be applied in our framework (see for a control function approach Blun-

dell, Powell (1999));

An estimation of particular functional associated to ¢ may be per-
formed. A particular example is given by average derivative estimation
which can be extended from the regression case to the instrumental
variables case (see Florens, Heckman, Meghir, Vytlacil (2001) or Flo-
rens, Larribeau (1995)). An other example is to deduce from ¢ an other
function by solving a differential equation like X' (21) = ¢ (21, A (21)) -
see Loubes and Vanhems (2001)). Application could be the non para-
metric estimation of a surplus function in presence of endogeneous
prices.
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v)

vi)

vii)

We may extend our result to weakly dependent dynamic data or to
heteroskedastic models;

The concept of regularity of functions relatively to an operator intro-
duced through the definition of the ® 3 sets must be compared to other
regularity notions (see for some preliminary results Carrasco, Florens

(2001)).

Finally a particularly interesting point could be to construct a fully
nonparametric endogeneity test. A first idea would be to compare
the estimated instrumental regression function @%N to a nonparamet-
ric estimator my of the conditional expectation function E[Y | Z]
by computing [(p3N — my)?m(z)dz (where 7 is a suitable weigth-
ing function). A better approach could be to transform the equality
o(z) = E[Y | Z] into E[E]Y | W] | Z] = E[E[E]Y | Z] | W] | Z]. All
the conditional expectations should be estimated and the test of the
equality may be performed.
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APPENDIX

A Proofs

A.1 Proof of Corollary 2.1
i) <= 11): (ii) implies (i). Conversely, let us consider ¢ such that:

TrTrle (2)] = E[Elp (Z2) | W] | Z] = 0.

E[E[p(Z) | W] = Elp(Z) Elp (Z) | W]]
= Elp (2) E[E[p (2) | W] | Z]] = 0.

We obtain E[p (Z) | W] = 0 and ¢ = 0 using the strong identification
condition.

1) <= 1iii): This property can be deduced from Florens-Mouchart-Rolin
(1990), theorem 5.4.3 or Luenberger (1969), Theorem 3 section 6.3. Since
R(T}:) = N(Tp)*t, R(T}) = L% (Z) is tantamount to N (Tr) = {0}.

A.2 Proof of Proposition 2.3
We have:

EY|X,W]=a(X)+6(X) € [y(2) X, W].

If " (X,7) = a* (X)+ " (X)v* (Z2) is another instrumental regression
function, we also have:

EY|X, W] = o (X)+5°(X) EY" (2) | X, W].

By taking the conditional expectation given X and making the differene
we get :

BX)EN(2) X, W] = Ely(2) |X]]
= S XEN (D)X, W] -EN (2)X].

From the assumption of conditional linear identification, we deduce:

X)) (2) - E((2)X)]
=/ (X) 0 (2) - B>y (2)1X)].
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Since P [3(X) = 0] = 0, we can write:

V(Z) = B (X)) (2)
= EN(2) -6 (X)) (2)1X],
where (3** is defined almost surely by:
v B(X)
5 (X)
Then, since X and Z are B-strongly measurably separable, there are
only two possible cases:

Ist case : The functions ™ (X) and E [y (Z) — ™ (X)~v*(Z) | X] are
constant:

5 (X) € B.

Then, if 5 (X) = ¢, we have ¢ = 1 by the normalization condition (i)
and then:

Y(Z) —v*(Z) is constant and thus equal to zero by the normalization
condition (ii). Thus:

B = fand v ="

Therefore:

a(X)=EY|X, W] -3(X) Ely(X)|X,W]=a" (X).
The functions «, 3 and « are identified.
2nd case: The functions 7 (Z) are v* (Z) are constant.

By the normalization condition (iii): @ = o* = 0 while by the normal-
ization condition (ii)

T=7"=c#0.

Therefore 3 = [3*.

A.3 Proof of Theorem 4.3

Let us denote by &, the random variable /N (TF’f,NT Py~ TFT,NTFN ¢) and by

£ its limit distribution:
VR(G — ™ —b3) = (anT + T}, Tp, ).
where, from Assumption A.7,
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En = &= N(0,0°T;Tp).
We introduce My = (aNI—l—TI’;NTFN)’l and My = (ayI + TET) L
For any 6 € L%, we have:
ON(ONPN — @™ = b)Y, () = A+ A + Ay + A3,

where

e (My€, 6)
1
(MyT3T, My, 6)2

?

(My (& — §),9)
(MyTETo M€, 8)2

Alz

b

(My — My)E, 6)
(M\T3Ty MyE, 6)2

7

AQZ

((My — My)(En = €),6)

A3 - T
(MyTETp My, 5)

The term A follows a N(0,0%) and we must check that A;, A, and A,
tend to zero in probability. First, we get:

My 6||?
A2 < _ QHL 0.
1 = ||§N §|| ||T]\1N5||2 -
Then we have:
2 y * _ % 2 ||‘]\/[N6||2
A < ||f||||A[N||||TFNTﬁN TpTy| T2 5[

which goes to zero if a% (N}llp + h%)) — 0. Finally, the term A5 goes to
N

zero faster than the terms A; and A,.
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A.4 Proof of proposition 4.1

Let us first remark that

/f2 : ) 2 wl,-) f(z) f(wr,) dzdwy

7 -, W1, )
2
/{/f ‘ ,2, w,1:7;’)21),w2)f(w2|w1,.)dw2} F,2,)f(, . wi,.)dzdw
= Z U)th) F (2, (. wi,we) dzdwidws.

. f2 ('727') f2 (.,.,’LUL’U)Q)

by Jensen’s inequality for conditional expectations. The first term is the
H.S. norm of T“‘T1 and one is the H.S. norm of Ty, Tr. Then T}*T} is an
Hilbert Schmldt operator and )\] LSO

The eigen values may be Compared pa1rw1se using the Courant theorem

(see Kress (1998), 15) we have

A2 = min max TrTre, ¢
! £0P15Pj—1 EL2 lell=1 < F ’ >
<pL(p07"'7pj71)
2
= max  [|[E (plw)|
llell=1
<pL(p07"'7pj71)

v
=
v
w

S

i

&

oL(pospj—1
> min max <T1¥*T1<p, ©)
£0P15Pj—1 EL2 llell=1
oL(pospj_1)
_ 2
- /\jl :

33



B A first discussion of A.4, A.5 and A.7

The objective of this appendix is to give a set of natural conditions which
implies the main assumptions A.4, A.5 and A.7. These conditions are ex-
tremely common in nonparametric analysis, but the more questionable hy-
pothesis assumed that the data density, defined on a compact support, is
bounded from below by a strictly positive number. Even if this hypothesis
is also retained by numerous papers (see e.g. Salinelli (1998), Imbens and
Newey (2001)), we introduce in appendix C an extension of our approach
which covers the general case. In this section, we focus on the bounded case.

Assumption B.1: The variables Y, Z and W take values in a compact set
X CR x R? x R1.

Assumption B.2: The probability density function f is d-continuously
differentiable on X.

Assumption B.3: The probability density function f is bounded from below
by € > 0.

Assumption B.4: The kernels K,, K,, K, are bounded, symmetric, of
order™ r.

Lemma B.1 : Under Assumptions B.1-B.4, Assumption A.4 is satisfied
with p = min (r,d).
Proof. First let us remark that, if A € Lr (2),
I(T: T, = TETAIR < IT5, Ty — ToTp A
where

IT%, T, = TrTrlloo = o, (7%, Te, = TFTr)9ll-
gll=

This norm is majored by the Hilbert-Schmidt (HS) norm of this operator
which satisfies (see Dunford and Schwartz (1963), X1.6):

Ay = T8, Ty, — TiTpllhs

" The kernel K is of order 7 if:

Va e N a1 +..+aqs€{l,..,mr— 1}, /w?l...mg"K(w) dz = 0;

Joe N a1+ ... +aq=r, //mf‘l...mgdK(m) dx # 0.

Note that, if K1 and Ko are of order r, then K3 K> is also of order r.
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where

f('7u7w)f('7z7w)
f('7z7')f('7 '7w) ’

and éy (2z,u,w) is the kernel estimator of e(z,u,w). Under Assumptions B.1-
B.3, Assumption A.1 (Existence of the Hilbert Schmidt norm) is obviously
satisfied.

We can restrict the integration domain to the interior of the compact
support of e since it boundaries has a zero measure!®. We linearize the term
éy (z,u,w) — e(z,u,w) to get:

e(z,u,w) =

éN (Zauaw) - e(z,u,w)

~ L ) = £ ()
B (o) = £ (2]
R R () = £ (2]
~ et L () = £ )] = ;B

and

4 : 4 g
iy [ Bjdw | Bjdw
Ay = 1555 I+ By < ) llm——l + Ry
T 25
In this expression the norm are the usual norm in the Hilbert space of
functions and R is a remainder term resulting for the linearization. Let us
consider for example the first term of the sum:

||£—;fl;2||2 -/ % ( [ ) Gy o) - f<.,u,w>>dw)2dzdu,

with:

f(zw)
f('7z7 ) f ('7 '7w) ‘

' The behavior of the integral of ([ [éx (2,u,w) — e(z,u, w)] dw)2 could be studied at
the boundaries of the support. This behavior would be analogous the behavior at a
interior, with a higher bias term (see e.g. Wand, Jones (1995)). We tank D. Bosq for this
remark.

by (z,w) =
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. Bidw . o . .
The random variable ||~L ||? is positive, so its rate of convergence is

[ (o,
the same!® than the rate of F {H [f(Bldw I }

B/ % ( [0 w) Gy ) = f<.,u,w>>dw)2dzdu] .

The usual argument on the behavior of E[(fy — f)?] may be trivially
extended to the integral of the density and we get:

</b1 (z,w) (fy (s u,w) —f(.,u,w))dw>2] =0, <N2p +h2m1n(rd)> '

E

Note that the integration w.r.t. w implies that only the dimension of Z
appears in the exponent of hy. We mutliply this quantity by % and we
integrate out z and u. The convergence rate is not modified and we get

fBldw 1 2min(r,d
15 ! = O gy 87

The same argument applies for the four terms. The remainder term in an
negligible using an elementary extension of usual argument on the behavior
the MSE of the kernel regression estimation (see e.g. Bosq (1998), theorem
3.1p. 68). 1

The following lemma is essential to check assumption A.5 and A.7 from
B.1-B.4. Actually this result will be used both as a verification of assumption
A.5 and for assumption A.7. For simplicity we only consider the homoscedas-
tic case.

Lemma B.2 : Under Assumptions A.1, A.2, A.3, A.6 and technical As-
sumptions B1-B.3, we get:

Z LB ol — NOPTETy),

Proof. We denote by:

,Z wz) B N

Z

Y57 X > 0 is such that E(Xn) ~ O(1), then Xx ~ O(1). This is an application
of Bienaymé-Tchebychev inequality: if E(Xn) < M as N — oo, we get P[Xy > ] <

E(Xn)x47 <&, Veand Xy ~ O(1). In the same way E(Xn) ~ O(an) = Xn ~ O(an).
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where 3, (z) is a sequence of i.i.d. random variables satisfying:

E[Bi(2)] =0,

and

2
)2, wZ
/f Z)Qf(.,,z,.)dz<oo.

Moreover, we have:

2
E[|I13:1%] / m )Qf(.,z, ) F (., w) dzdw < oco.

This Hilbert Schmidt assumption is implied by Assumption B.1-B.3. So
Vi converges to a gaussian process (see Van der Vaart, Wellner, theorem
1.8.4 p. 50). The variance is given by an operator K such that, for any
©,1 € L%, we have:

(K9, ) = E[(Vn, p) (¢, VN)]
— 7] / / V() Vi (e(2)0 () f (-,2,-) f (u,.) dzdu
//EVN Va2 f (,2,.) f (u,.) dzdu

z)
— 0 //E (o203 F o Wids oy ) £ (2 ) £ (o, ) dicls
f (7 7w2) o ’ ’

*9 7

We obtain:

_ 2 f('7z7w)f('7uvw) 2/
Ky=o0 // Pl Y (u) dzdu = o“TETRp,

f ()

and finally we get :
Vy = N(0,0°T3T%).

Lemma B.3 : Under Assumptions A.1, A.2, A.3, A.6 and technical As-
sumptions B.1-B.4, Assumption A.5 is satisfied with p = min (r,d).

Proof. Using standard linearization, we first replace Ay = r}, —-T% T. ¢
N
by:

Actually, from the above expansion of the integrand of Ay as the prod-
uct of four functionals of f, the derivative is computed as the sum of four
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corresponding terms. But three among these four terms are nil thanks to
the assumption T = rp.
Moreover, we can decompose Ay as follow:

Ay = N Z G zf(wz) " (yi — () + R

Then we get:

ENET Z A= o) + IR,

The remainding term R is of the form:

%i {/a(s)KhN(S — si)ds — G(Si)} ;

where s = (y,u,w) and Kp (8 — 8i) = Ky nn (Y=Yn) Koy (0 — 20) Ky pyy (W — wy,)
f ('727 w)
f ('727 ') f ('7 '7w)

and the usual analysis of bias term in kernel smoothing inference shows
that the norm of this term in an O <h%ln(T’d)). The result follows from the
application of Lemma B.2 B

a(s) = (y —p(u))

Assumption B.5: The smoothing parameter h; satisfies Nh2 min(nd) _,

as N — oo.

Lemma B.4 : Under Assumptions A.2, A.3, A.6 and technical Assump-
tions B.1-B.5, Assumption A.7 is satisfied.

Proof. The linearized form of v/N(r%, —T% T. ¢) can be written as:
By By Fy

Z T T .)<yi—so<zi>>—§§;{/ 0l3) (s = 5)ds —as) |

’L

where a(s) is defined in the proof of Lemma 3. Under Assumption B.5, the
second term of the previous decomposition goes to zero. We use Lemma 2
to get:

VN(r, — T Ty ) = N(0,0°T;Ty). B
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C Generalization allowing to consider non bounded
densities

C.1 Definitions

Let us consider the random vector S = (Y, Z, W) € R x RP x RY, with
cumulative distribution function F, and the two cumulative distribution
functions G and H defined on R? and RY respectively. We assume that:

L%(Z) c L3(Z) and LL(W) C LE(W), (C.1)

where L%(Z) (resp. L% (W)) denotes the space of squared integrable func-
tions with respect to G (resp. H).

Remark C.1 : If we only consider distributions characterized by their den-
sities with respect to the Lebesque measure f, g,h, we easily check that the
two previous conditions are satisfied if it exists two strictly positive numbers
c1 and co satisfying:

f(2,.) <cag(z) F-a.s. and h(w) < c2f(.,.,w) F-a.s.. (C.2)
The two constants are then necessarily greater than one.

Remark C.2 : The relation between F and G, H can be interpreted in two
ways:

Remark 1 i) we can fir G and H and consider the class F of F satisfying
the two constrains

i1) we can choose G and H depending on F (for example, we choose G
as the marginal distribution of F', conditionally to a subset on which f(z) is

bounded).

In ii), G and H must be estimated. To simplify the presentation, we
adopt i) in which G and H are fized, but the approach can be generalized to

For any F' belonging to F, the conditional expectation operator T}, is
now considered as an operator from L%(Z) to L% (W). We always assume
that T} is an Hilbert Schmidt operator relatively to these spaces. This is
equivalent to assume that:

/ %g(z)h(w)c&dw < 00. (C.3)

Remark C.3 : If the conditional expectation operator from L3.(Z) to L%(W)
satisfies an Hilbert Schmidt condition, we obtain the property (C.3) from the
conditions (C.2).
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Definition C.1 : The function ¢ belonging to LQG(Z) is an instrumental
regression if Tpp = rp, with rp = E[Y | W].

Remark C.4 : Since the function ¢ is now defined in an restricted space,
the identification condition becomes: the function ¢ is identifiable if we have

EXN(Z)|W] =0 as.and A € L4(Z) = A =0 a.s..

C.2 Dual, spectral decomposition and regularization

Let us first denote that the dual of T} as an operator from L%(Z) to L%,(Z)
is not the conditional expectation of the functions W given Z. In the dom-
inated case, T} satisfies:

f(., z,w)h(w
Ti(e) = [ L=y )au, (C.4)
because (Tro, V) i = (p, Tith) o ({-, )y denotes the inner product in L2,(Z)
and (.,.) denotes the inner product in L%(Z)). We have:

T T (2) / { / 1C, f2 - ))h(w)dw}q)(u)du. (C.5)

The Hilbert Schmidt assumption always implies the compactness of T},
Ts, TpTp, TpTy, the existence of vectors ¢; € Li(2), ;€ L%(Z), and )\?
satisfying the properties ¢) to viii) of Subsection 2.2. The general theory of
regularization applies for this choice of T%. We define ¢* by:

©* = (al + T}TF)_ITI?TF, (C.6)

and we get ||p* — ¢l|o — 0.

C.3 Estimation

The estimation of ¢ is obtained by replacing the density f and its margins
by their estimators fxn (see Section 4). We assume that:

w —w
K/U)’h/w < n>
T\ hw e L3, (W)

We do not detail the computation but we just underline that (oI +

T TF ) is a finite rank operator, and the solution of the equation:
N

Fy

is obtained as in Annex D.
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C.4 Asymptotic properties

We must check whether the assumptions A.4 and A.5 are satisfied. This im-
poses some additional regularity assumptions. For simplicity we restrict our
attention to second order kernels and second order differentiable functions.
The first property to check concerns the expectation of the Hilbert Schmidt

norm of T;’NTF‘N —TpTy, ie.:
~ ~ 2
1 v zw) v u,w) B flz,w) f(,u,w) w\duw s
/ 9(u)g(2) {/ [ Flsw) P2 w) ]h( . } s

(C.7)

The computation is done by linearization of the terms in the bracket.
Let us consider for example the first term of this linearization, , i.e.

f('7u7 w) N
f2(-7-7w) (fN('azaw) f(azaw))
The integral with respect to w is approximated by:
1 z— 2z, \ ., u,w)h(w;) /f W)
K, h(w)dw,
i Ko () St [

(C.8)

up to an h?v term which we integrate in the bias term. This term contribute
to the norm by a bias term and a variance term. The variance term is:

NL%’V/KQ(U)du/g(z)lg(u) f (}g(’jl.]’)z)(w)f(.,z,w)dwdudz. (C.9)

This integral must be convergent. This can be obtained by replacing the
conditions (B.2) by:

f(2) < dig*(2) F-a.s. and h(w) < daf?(w) F-as.. (C.10)

and by assuming that [ f(w | 2)g(z)dz < m. We obtain:

1 2 u,w)h?(w) oV dwduds

| Py e dwdud ()
—U/LU) u w)auaw
<m@m/ s g(u)h()dud,

and the integral converges with the Hilbert Schmidt assumption. The con-
vergence to the squared bias term imposes some additional assumptions on
the second derivatives of f. We must for example assume that:

/—g2(u()éf;£.), .7w)g(u)h(w)dudw < 0,
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where 92 f denotes the sum of the second derivatives of f(z,w) with respect
to z and w.

The second element to establish the asymptotic properties is the asymp-
totic behavior of TA Thy T TI’; TFN(p. This term can be decomposed as
Ti(re, — TFN<p)+(T* —Tp)(ri, —TFN(/)). Since rp Ty ¢ —=rr—Tpp =
0, we check that under very general assumptions, the second term of this
decomposition is negligible with respect to the first term. We have then by
linearization of the conditional expectation:

Ti(rs, - / uc f2 hlw) P2 By — () Pl w)ydudo

= —Z us Zf;%’ ’wz)) (yi —(zi)) + R.

The first term, when multiplying by v/ N converges in L%(Z) to a gaus-
sian law, with zero mean and with variance 02 characterized by:

(Qer, 02 = / Wz, )1 (2) s (u)g (u)dudz,

with

ol /f zw) uw>h2< w

s W)

The Hilbert space convergence comes from the condition:

2., z,w)h?(w
/ I D7 ))g(z)f(, Sw)dzdw < oo,

obtained with (C.2) and the Hilbert Schmidt condition. Finally, we check
with the usual approach that the remainder term is proportional to h?v.
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D Numerical implementation

We will show in this appendix how our estimation procedure reduces to fi-
nite dimensional matrix computation. To simplify the notations introduced
in section 4, we drop out indexes (an, 3", Kz h_y--becomes a, ¢, K...). Def-
inition (4.1) becomes:

2 (2) K (Z — Zl) dz = / K(w_wi)K(w_wn)dw K(Z—zn)
;;/ ZK(U’*WE) ZK(zfzg)
£ ¢

" / K(w—w;)K(w— wn)dw K(z—2zn)
ZEZ: . ZK(w wp) ZK(zfz'g)
¢

(D.1)

or equivalently

+ Z gzamﬁ Z yzamﬁ (D-Q)

where

" /K(w—w»K(w—wn)dw

ZK(w—wg)
L

& = /sa(z)K(z—zi)dz
Bulz) = =

EKZZ[

If we multiply this equality by K (z — z;) we get, after integrated out z:

af +Z€am nj — Zyzam nj (D3)

where
"K (2 — 2zp) K (2 — 2j) d

bnj = S K (2 —2z)

Using the matrix notation:
§= (fi)i:L...,N A= (ain)é
Y= (yi)izl,...,N B(




We have to solve:
(al + AB') ¢ = AB'y (D.4)
which implies, using D.2

p2) = -8 AB(2)

= Ly |1 -lal+AB) 4B "AB(2) (D-5)

«

To a pratical point of view we need first to compute by integration the
elements of A and B and to inverse an N x N matrix.

This computation can be simplified if we approximate, for example, ¢;
by ¢ (z) and by simplification of the elements of the A matrix. Using this
approximation the estimator @ is a solution of:

¢ (2i) K (wy, —w;)
ap () + Z; )
o %:K(wn—wg) ;K(Z—Ze)
WK (wp, — w;)
Zy K (z— z)

; %:K(wn—wg) %:K(z—zg)

(D.6)

Ifz=2;j=1,..,N, weget an N x N linear system which can be solved
in the ¢ (2;) and ¢ (z) can be compute using (D.6) for any z. Properties of
this approximation had to be studied. Roughly speaking the approximation

magnitude is on the same nature of the bias term in kernel smoothing h%’

and the asymptotic behavior of this estimator is identical to the estimator
studied in the paper.

E Counterexamples

E.1 About Example 1.2

Let us define :
V=2-E(ZIW) and h (v) = V2.

Then, if ¢ and p*are well-defined as solutions of (1.2) and (1.4) respec-
tively:

Elp(Z) = ¢" (2)|W] = E [*|W] = Var [Z|W] = o* (W).
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For an explicit example, let us consider the case:
EY|Z, W] =aZ +bZ? +V?,
that is: ¢*(Z) = aZ + bZ2. Then:

Elp(2)W] = El¢"(2)|W]+0* (W)
= aE(Z|W)+bE (Z*|W) + o> (W).

If, for instance:
E(ZW) =0 (W),
Elp(Z) W] = ac (W) + 2b0* (W) + o2 (W).

This is consistent with:

N o . 7Z?
0 (Z)=aZ + b+§ Zz(p(Z)+7.
In this case:
OE (Y|W) _ OE (Z|W) OE (Z|W)
PTG =aq BTG +2(204+1)E(Z|W) BTA

and therefore a sotution @* to (1.5) is given by:

P (Z)=aZ +2b+1)Z2 =" (Z)+ (b+1) 7%

E.2 About measurable separability

Let X and Z be two binary variables:

P[X =0+ P[X =1]
P[Z=0+P[Z=1]

7

1
1.

As soon as:

0<PX=Z7<1,

X and Z are measurable separable. To see this, let us consider for
example them are:

PIX=0,Z=1>0.
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Then two functions a (X) and ~ (Z) such that:

should fulfill:

and
(a(0) =7(0)) or (a(l)=~v(1)).

In this case, we conclude that o and v are constant functions. However,
one may find in general two non-constant functions a (X) and b(Z) such

that:
a(X) +b(2) 2 B(X) +7(2),
with
B(0)# 0 and 3 (1) 0.

To see this, let us assume:

(Ogggg(l)’
= (138313(1) ’
(1) = IO

we do ensure:
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