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1. Introduction

Consider a fixed set of agents having preferences over some set of alternatives.
The Pareto relation generated by their preference profile deems an alternative a
weakly better than an alternative b if and only if all agents weakly prefer a over b.
If individual preferences are complete and transitive, this relation is a quasi-order,
l.e., a reflexive and transitive relation. What kind of quasi-order is it?

This question has not been directly addressed in the literature. It is well known
that every quasi-order is the Pareto relation generated by some preference profile
if no restriction is imposed on the number of agents. The seminal article on this
subject is Szpilrajn (1930); for two recent contributions (and further references),
see Donaldson and Weymark (1998) and Duggan (1998). Aizerman and Aleskerov
(1995) offer a theorem on the minimal number of agents needed —a problem for-
mulated by Dushnik and Miller (1941)— and discuss the various upper bounds
established in the literature. By contrast, we are interested in identifying neces-
sary and sufficient conditions for representing a quasi-order as the Pareto relation
of a preference profile of a given number of agents.

Our motivation is the following. In many economic contexts, the number of
agents is known. Their preferences, however, are not. This poses the problem
of identifying the restrictions imposed by various collective choice theories on the
agents’ observed joint behavior in the absence of information on their preferences.
In particular, it is of interest to identify the restrictions imposed by Pareto effi-
ciency: this calls for a better understanding of Pareto relations.

To gain some intuition about the problem under study, suppose there are
only two agents and six alternatives: a,b,c,x,y, z. Consider the binary relation
R described in Figure 1, where the symbol R is written at the intersection of row
m and column n if and only if mRn. It is a quasi-order. Yet we cannot find two
complete and transitive preferences whose Pareto relation would coincide with R.
For suppose =1, =2 were such preferences. Since a,b,c are maximal elements of
R, =1 and =9 must be completely opposite over those three alternatives. To fix
ideas, suppose

a =1 b =1 ¢ and, therefore, ¢ =9 b =5 a. (1.1)

Since aRy and cRy, we must have a =5 y and ¢ =1 y. It follows that b =; y and
b =9 vy, hence bRy, a contradiction to the definition of R. A similar contradiction
arises if we replace (1.1) with any other profile of opposite preferences over the
three alternatives a, b, c.



Thus, two-agent “Paretian quasi-orders” do possess specific properties. The
property suggested by this example is that, for any three noncomparable alter-
natives, one is “between” the other two, in the sense that its lower contour set
includes the intersection of the other two lower contour sets. Building on this
observation, we will present a complete characterization of Paretian quasi-orders
for the case of two agents and a continuum of alternatives. This, obviously, is
only a first —hopefully useful— step.

2. A formal statement of the problem

The set of alternatives is a nonempty, compact, connected set X C R™. It is
fixed throughout the paper. There are two agents, i = 1,2, whose preferences are
preorders — i.e., complete and transitive binary relations — on X, denoted =4
and =9 . We sometimes write y <; x instead of x »=; y : both notations mean
that agent i weakly prefers z to y, and ~; denotes indifference. We call (=1, =)
a preference profile. The Pareto relation generated by (=1, %=2) on X, or simply
the Pareto relation of (=1, =2), is the binary relation R*(=1, =2) on X defined by

TR (=1,29)y © x =1 y and x =5 . (2.1)

A maximal element of that binary relation in X is a Pareto-efficient alterna-
tive. The Pareto relation R*(%=1, =2) is clearly a quasi-order, lLe., a reflexive and
transitive binary relation. As mentioned in the Introduction, our purpose is to
identify the characteristic properties of such quasi-orders. We will do so under
some regularity restrictions.

Definition 1. A preference profile (=1, =) is regular if it satisfies the following
three conditions:

1) both agents’ preferences are continuous (in the usual sense that all weak
upper and lower contour sets are closed);

2) for every alternative x there exist Pareto-efficient alternatives 2/, z” such
that 2’ ~1 x ~9 2z’ and, conversely, for any Pareto-efficient alternatives 2/, z”
there exists some alternative x such that &’ ~q x ~q x;

3) the correspondence associating with each alternative z the set of alternatives
weakly preferred to x by both agents is lower-hemicontinuous.

The question we answer in this paper is the following: if R is a quasi-order on
X, under what conditions does there exist a regular preference profile (=1, =)
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whose Pareto relation R*(=1, =2) coincides with R? If such a profile exists, we
call R a regular Paretian quasi-order.

The following straightforward observation will be helpful. The preference pre-
orders =1, =9 meet conditions 1) and 2) of Definition 1 if and only if they admit
continuous numerical representations uy, us generating a complete utility set: that
is, letting u = (uy,us), writing vector inequalities >, > >> and defining the upper-
frontier of the utility set u(X) by Ou(X) = {z € X : there is no y € X such that
uly) > u(@)},

weu(X) e I, v e duX): w=uw Au", (2.2)

where A denotes the coordinate-by-coordinate minimum operator.

3. Basic conditions

Let R be a quasi-order on X. Denote by P, [, and N, the asymmetric, symmetric,
and noncomparable factors of R, respectively. Denote by M the union of I and
N: xMy thus means that x is indifferent or noncomparable to y. If y € X, let
Wr(y) = {z € X : yRz} and Bgr(y) = {x € X : xRy}. These are, respectively, the
sets of alternatives that are weakly worse and weakly better than y. To simplify
notations, we often write W (y) and B(y) instead of Wx(y) and Bgr(y), especially
in the proofs. Here are three basic properties that every regular Paretian quasi-
order I? possesses.

Property 1: Complete Intermediateness. Let z,y,2 € X be pairwise
indifferent or noncomparable under R, i.e., My, xMz yMz. Then at least one of
the following statements is true: 1) Wx(y) "Wgr(2) C Wg(z), ii) Wgr(z)NWg(z) C
Wr(y), iil) Wg(z) N Wg(y) € Wg(z). Moreover, 1) and ii) are both true only if
xly; similarly, 1) and iii) together imply Iz, and ii) and iii) together imply yIz.

Note that z/y implies 1) and ii) for any quasi-order and any z,y € X. It follows
that if 1) does not hold, z must be noncomparable to both 3 and z. Note also that
the regularity of a preference profile is important to make sure that its Pareto
relation satisfies the second part of Property 1.

Property 2: Transitive Intermediateness. Let w,z,y, 2 € X be pairwise
indifferent or noncomparable under R, and zNy. If Wgr(w) N Wg(y) C Wg(z)
and WR<$) N WR(Z) g WR<y), then WR<U)) N WR(Z) g WR<$)



Note that a regular Paretian quasi-order need not satisfy the stronger property
obtained by dropping the proviso zNy in Property 2: suppose, e.g., that R =
R*(%=1,72), where =1, =9 are represented by uy, us and uy () = uy(y) < uy(w) <
u1(2) and us(z) = us(y) > ug(w) > us(2).

Property 3: Exclusive Intermediateness. Let w,z,y, 2z € X be pairwise
indifferent or noncomparable under R, and zNy and zNz. If Wr(w) N Wg(y) C
WR<$) and WR<U)) N WR(Z) g WR<$), then WR<y) N WR(Z) g WR<$)

The stronger properties obtained by dropping either of the provisos /Ny or
Nz are violated by some regular Paretian quasi-orders: suppose, e.g., that R =
R*(%=1, =2),where =1, =9 are represented by wuy, us with uy(w) < uy(z) = ui(y) <
u1(2) and ug(w) > ug(z) = us(y) > us(2).

We conclude this section by noting a useful consequence of the three above
properties.

Lemma 1. Let R be a quasi-order on X satisfying Properties 1, 2, 3, and
let w,z,y,z € X be noncomparable or indifferent under R. If Wgr(w)NWgr(y) C
Wg(z) and Wr(w) N Wg(z) C Wr(2), then Wg(y) N Wg(z) C Wr(x).

Proof. Assume Properties 1, 2, 3, let w,z,y, 2 be noncomparable or indiffer-
ent, and suppose

W(w)NW(y) CW(z), (3.1)
W(w) N W(z) CW(z). (3.2)

Suppose, contrary to the claim, that W (y) N W (z) € W(z). By Property 1,
xNy,zNz, and at least one of the following statements is true:

Wi(x) N W(z) CW(y), (3.3)

Wi(x) N W(y) CW(2). (3.4)

Suppose (3.3) is true. By Property 2, (3.1) and (3.3) imply that W(w) N
W(z) € W(x), which together with (3.2) implies Iz by Property 1. This con-
tradicts the fact that zNz.

Suppose next that (3.4) is true. If 21y, rewrite (3.1) as W(w)NW(z) C W(x):
this, along with (3.2), implies that xlz, a contradiction. If zlw, rewrite (3.1) as
W(z) N W(y) € W(z): this, along with (3.4) implies again, by Property 1, that
xlz. We conclude that z is noncomparable to both w and y. By Property 3, then,
(3.2) and (3.4) imply that W(w) N W (y) € W(z), while (3.1) and (3.4) trivially
imply that W(w) N W (y) € W(z). This contradiction completes the proof. B



4. Regularity conditions and characterization theorem

Denote by 0rX, or simply 0X, the set of maximal elements of R in X, ie.,
OrX = {z € X : there is no y € X such that yPx}. For each z € X, define the
exterior set of x as Er(z) = {(2/,2") € X x X : Wg(2') N Wg(2") C Wg(x)}; we
also write it F/(z) to alleviate notations.

Consider the following restrictions on R.

Property 4: Continuity.

1) The set IxX is a closed subset of X.

2) For each z € X, Bgr(z) is a closed subset of X.

3) The correspondence Bg : X —— X is continuous.

4) For each z € X, Fr(x) is a closed subset of X x X.

Property 5: Richness.

1) There exists zg € X such that, for every x € X, xRx,.

2) For all z, z € X such that Pz, there exists some y € X such that xPyPz.
3) Let z,y € X. If for every z € OrX, 2Ry implies 2Rz, then yRz.

We are now in a position to state our main result.

Theorem. A quasi-order on X satisfies Properties 1 to 5 if and only if it is
a reqular Paretian quasi-order.

The proof of the “if” part is almost straightforward. In checking Property
4.3, note that if (=1, =) is a regular profile, the correspondence Br«(s.,,,), which
we assumed to be lower-hemicontinuous in Definition 1, is in fact also upper-
hemicontinuous by continuity of > and = .

The proof of the “only if” part of the theorem relies on two lemmata.

Lemma 2. If a quasi-order R on X satisfies Property 4.2 and Y is a non-
empty compact subset of X, then R has a maximal element in Y. In particular,
OrX is nonempty.

Proof. Tet R and Y satisfy the assumptions of the lemma. Tet Z C Y be
an arbitrary R-chain in Y: for all z,y € Z xRy or yRx. For each y € Z, define
B(y;Y) = B(y) NY. For every finite set 2" C Z, NyezB(y;Y) # 0 since the sets
B(y;Y) are nonempty and nested. By Property 4.2, each of these sets is compact
(recall that X itsell is compact). By a standard result (see, e.g., Rudin 1964,
Theorem 2.36), it follows that the set NyezB(y;Y) is nonempty. Any element of
that set is an R-upper bound for Z. Invoking Zorn’s lemma completes the proof. B



In what follows, we will be concerned with binary relations on 9z X. A binary
relation < on JgX is continuous if, for every x € 9z X, {y € OgX : y < z} and
{y € OrX : z < y} are closed subsets of Iz X. It is R-consistent if

Vo, y,z € OgX, Wr(x) NWr(z2) CWgr(y) @ zxy<szorzsy=<a. (41)

Finally, two binary relations <, <" are opposite if, for all z and y € Or X, z <y &
y < m

Lemma 3. If a quasi-order R on X salisfies Properties 1,2,3, and 4, then
there exist two continuous R-consistent opposite preorders <, <, on IrX.

Proof. Let R satisfy Properties 1 to 4. Call (2, 2,) an extreme pair (of 9X)
if
Vo e 0X,W(z)NW(z) C W(x). (4.2)
Step 1. An extreme pair of 0X exists.
Define the binary relation e on 0X x 90X by

(z,y)e(@,y) & W(z) "W (y) € W (") nW(). (4.3)

We claim, first, that e has a maximal element in 0X x 0X. If x,y € 0X, let
E*(z,y) = E(x)NE(y) N (0X x 0X). This set is nonempty since it contains (x,y)
and 1t 1s compact by Property 4.1 and 4.2. Pick now an arbitrary e-chain 7 in
OX x 0X. For any finite set Z' C Z, Nz ez ¥ (2, y) # 0 because the sets E*(x,y)
are nested. It follows that Ny 4)czF*(x,y) is also nonempty. Any element of that
set is an e-upperbound for Z in 9X x dX. Applying Zorn’s lemma establishes our
claim.

Let (21, 2-) be a maximal element of e in 9X x X. We argue now that it is
an extreme pair of dX. Suppose, by contradiction, that

W(z) NW(z,) € W(x) (4.4)
for some z € OX. According to Property 1, W(z) N W(z) C W(z.) or W(z,) N

W(z) C W(z). Assume the former inclusion; the argument is similar if the latter
holds. It implies that W (z) NW(xz) C W (z) N W (z,), L.e., (z,2)e(z1, 2.). On the
other hand, (4.4) implies that W(z;) N W(z,) € W(z) N W(z), Le., we do not
have (z;, 2, )e(z;, ). This contradicts the fact that (2, 2,) is a maximal element of
e, thereby completing the proof of Stepl.

Call two extreme pairs (1, y,), (21, 2-) R-equivalent if at least one of the fol-
lowing statements is true:

y 2z and y,1z,, (4.5)
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y 1z, and y,12;. (4.6)
Step 2. All extreme pairs of X are R-equivalent.
Let (y1,9,), (21, 2-) be two extreme pairs. We claim, first, that
y Lz or ylz,. (4.7)

Suppose, on the contrary, that y,Nz; and y;Nz,.. By the definition of extreme
pairs,

W(z) "W (z) €W (w), (4.8)
W<yl> N W(%’) C W<Z7’>7 ( >
W(y) "W (y.) € W(z). (4.10)
)
t

By Property 2, (4.8) and (4.9) imply W (z,)NW (y,) € W(y,) while (4.8) and (4.10
imply W(y,) N W(z.) € W(y,). These two inclusions imply by Property 3 tha
(4.8) does not hold. This contradiction establishes (4.7). The same argument,
mutatis mutandis, yields that

yr 1z or y.1z,. (4.11)

The claim follows now easily from (4.7) and (4.11). Notice that if 3,1z and
y-I2;, then y; 1y, and, using (4.9), we conclude that y;,y,, 21, 2, are all indifferent.
A similar argument applies if 4,12, and y,[z,. Step 2 is proved.

Step 3. If (z,2,) is an extreme pair, then, for all x,y € X,
Wi(x) "W (y) CW(z)only if xlzor ylz, (4.12)

and this statement is also true if we replace z; with z,.
Assume, by way of contradiction, that

Wi(x) "W (y) CW(z), 2Nz and yNz. (4.13)

Since (21, 2,) 1s an extreme pair, W(z) N W(z,) C W(x) and W (z) N W(z,)
W (y). These two inclusions and (4.13) imply by Property 2 that W (y) N W (z,)
W (z) and W (z)NW (z,) € W(y). Property 1 now implies that z/y, hence W (x)
W(y) = W(z) N W(y), contradicting (4.13).

1 Im

Step 4. There exist two R-consistent opposite preorders on d.X.



Let (z;,2,) be an extreme pair of 9X. Define the binary relations =, <, on
0X as follows: for z,y € 0X,

r=1y e Wz nW(y) CW(x), (4.14)

r =,y e W(z)NW(y) CW(x). (4.15)

We claim that these relations are R-consistent opposite preorders.

First of all, observe that the (unordered) pair of relations (=, <,) is not af-
fected by the choice of the extreme pair (z, z-) because of Step 2.

Next, let us check that these relations are preorders. Transitivity of =< is
straightforward: if = <; y <; 2, then W(z) "W (y) € W(z) and W(z)NW(z) C
W (y), automatically implying that W(z;) N W(z) C W(x), hence z =, 2. If x,
were not complete, there would exist 2,y € X such that W(z) N W(y) € W(x)
and W (z) NW(z) € W(y). By Property 1, W(z)NW(y) C W(z) and 2Nz and
yNz;, contradicting Step 3. This shows that =; is a preorder; the proof for <, is
similar.

Let us now prove R-consistency. We must show that (4.1) holds true if < is
< or <, . We focus on =;; the proof for <, is again similar.

Assume, first, that z <; y <; 2. Then W(z) N W(y) € W(x) and W(z) N
W(z) C W(y). By Lemma 1, we conclude that W (z) "W (z) C W (y), as desired.
If 2 <; y <, =, the same conclusion follows by exchanging x and z in the argument.

Conversely, suppose now that

Wi(z)nW(z) CW(y). (4.16)

Since <; is complete, x <; y or y <; x. Consider the former case first. By
definition,

W(z) NW(y) € W(x). (4.17)

If Ny, (4.16) and (4.17) imply by Property 2 that W(z;) "W (z) C W (y), hence
Yy <; 2, as desired. On the other hand, if zly, then z ~; y and we necessarily have
Ty X 2Or 2 Y~ X

Next, consider the case where y <; x. By definition,

W(z) NW(z) C W(y). (4.18)

If yNz and yNz;, (4.16) and (4.18) imply through Property 3 that W (z)NW (z) €
W (y). Hence, by definition and completeness of <, 2z <; y, as desired. If y1z, then
z ~; y and we are done again. Finally, if y/z;, (4.16) yields W (z)NW (z) C W (),
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implying by Step 3 that z/x or zlz. If z;lx, then zly, hence x ~; y : again,
T~y zor 2 <Y~ x, as desired. If 212, then ylz and we are done again.

Now, let us check that <; and =<, are opposite relations. If z =<; y, then
W(z) NW(y) € W(z). Since (2, 2,) is an extreme pair, W(z;) N W(z,) C W (y).
By Lemma 1, these two inclusions imply W (z,) "W (z) C W (y), hence y <, x, as
desired. The same argument, mutatis mutandis, shows that y <, x implies x <; .

Finally, let us check that <; and <, are continuous. We fix x € X and show
that {y € 0X : = <; y} is a closed set. Consider a sequence {y,} , y, € 90X
and x <; Y, for all n, converging to some 7/°. Since X is closed by Property 4.1,
y° € OX. Moreover, W (z) N W (y,) C W(x), i.e., (21,yn) € E(z), for all n. Since
FE(x) is closed by Property 4.4, (z;,3°) € E(z). Therefore W (z;) "W (y°) C W(x),
hence z <; %°, proving our claim. The proof that {y € 0X : y <; 2} is closed is
similar. Thus =; is continuous. Since =<, is opposite to <;, it too is continuous.
This completes the proof of Step 4 and the lemma. B

We may now prove our theorem.

Proof of the Theorem.

We have mentioned that a regular Paretian quasi-order satisfies Properties 1
to 5. Conversely, fix a quasi-order R on X satisfying those properties.

Step 1: Constructing the preference profile (=1, =2).

For each x € X, define B*(x) = B(z) N 0X. This set is compact by Property
4.1 and 4.2. Because R is a quasi-order, B*(x) coincides with the set of maximal
clements of R in B(z). It is therefore nonempty by Lemma 2. Using the same
type of argument as in the proof of Lemma 2, one easily shows that »>; has a
minimal element [(z) and a maximal element r(x) in B*(z). In fact,

B*(z)={yedX :l(z) iy i r(x)}. (4.19)

Indeed, if y € 0X and I(x) <, y < 7(x), then z € W(l(z)) N W(r(z)) C W(y)
since [(z),r(x) € B(z) and =<; is R-consistent. This means that x € W (y), ie.,
y € B*(xz).

If VY C 90X are such that x ~; y for all z,y € Y and 2/ ~; ¢/ for all
2,y €Y' the notation Y =; Y’ has an obvious unambiguous meaning. We use
a similar notation for =<,. Denote by A(z) and p(z) the (compact) sets of all
minimal and maximal elements of =; in B*(x), respectively. Define the binary
relations <1 and <5 on (the entire set) X as follows:

=<1y Mx) 1 AMy), (4.20)
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T =2y < p(z) < p(y)- (4.21)

Clearly, these relations are preorders.

Step 2: Checking that the Pareto relation of (=1, %2) coincides with R.

If yRx, then B*(y) C B*(z). Recalling (4.19), this implies that A(x) <; A(y)
and p(x) <, p(y). Therefore z <1 y and = <2 y. Conversely, suppose z <1 y and
z <2 y. Then A(z) =, My) and p(z) =, p(y) and, by (4.19), B*(y) C B*(z). By
Property 5.3, yRz.

Step 3: Checking reqularity.

3.1) First, let us establish that the two binary relations are continuous. We
start off by noting that the correspondences A and p from X to dX are upper-
hemicontinuous. For any z € X, A(x) is the set of maximal elements of a contin-
uous preorder over the nonempty compact set B*(x). Since by Property 4.1 and
4.3, B* : X —— X is a continuous correspondence, A is upper-hemicontinuous
by (a version of) the maximum theorem. A similar argument applies to p.

Fix now z € X and check that {y € X : z <1 y} is closed. Consider a sequence
{y,} in that set converging to some 1°. Since X is closed, 3° € X. For each n,
Ax) <1 A(yn). Recalling the definition of =, from (4.14), we can choose some
I(z) € A(z) and, for each n, some l(y,) € AMyn), such that W(z) N W (l(y,)) C
W(l(x)), i.e., (z,l(yn)) € E(l(x)) for all n. Since A is compact-valued and upper-
hemicontinuous, some subsequence of {l(y,)} converges to a limit I° € A(y°).
Since E(I(z)) is closed by Property 4.4, (z;,1°) € E(I(x)). So I(z) =< I° hence
Az) <1 A(»°), implying that = <1 3°, as desired. A similar argument establishes
that {y € X : y <1 x} is also closed. This proves that > is continuous; a similar
argument applies to =5 .

3.2) Since = and =5 are continuous preorders on a connected set, they admit
continuous numerical representations uq, us. Since X is compact and connected,
so is u(X). We now show that u(X) is also complete in the sense defined by (2.2).

Pirst, let w',w” € du(X), say, wy < w] and wy > wj, and let us check that
w' A w” € u(X). Suppose not. The set

Z$ ={w e u(X) : w; = w)| and wy > w)
is compact, nonempty (since it contains w'), and does not contain w’ Aw"”. Hence,
there exists w} > wj such that (w},w}) € Z}" and wy > wj for all (wy,wy) € 7.

The set
Zy ={w e u(X) : wy = w) and wy < wy
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is also compact and does not contain w' A w”. We claim that Z; = §. Oth-
erwise, there exists wi* < wj such that (w),ws*) € Z; and wy < wi* for all
(wy,wq) € Z; . By Property 5.2, there exists some wy such that wi* < wy < w}
and (w),we) € u(X), contradicting the definitions of wj and wj*. The same
argument, mutatis mutandis, shows that the set

Zy ={w e u(X) : w <w; and wy = w,

is also empty. By Property 5.1, however, there exists some wy € u(X),wy <
w' A w”. This contradicts the fact that u(X) is connected.

Conversely, let us now fix w € u(X) and show that there exist w', w” € du(X)
such that w = w Aw”. Let x € X be such that u(xz) = w. From Step 1, B*(x) =
{y € 0X : Mz) <1y <1 p(2)}. Recalling that <; and =, are opposite, observing
that A(y) ~; y ~,» p(y) for any y € X and using the definitions of =1, =5, we see
that

B*(z) ={y € 0X : w1(y) > u1(l(z)) and us(y) > us(r(z))} (4.22)

We claim that
u(z) = u(l(z)) Aulr(z)).

Since l(z),r(x) € B*(x), we obviously have u(z) < u(l(z)) A u(r(x)). Suppose
u(z) < u(l(z)) Au(r(x)). As we have shown, the right-hand side of this inequality
belongs to u(X). Let thus 2/ € X be such that u(z') = u(l(z)) A u(r(z)) =
(ur(I(x)), u2(r(x))). By (4.22), B*(z) = B*(z'). This contradicts Property 5.3
since ' Px. A
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Figure 1: A quasi-order that is not a two-agent Pareto relation

a b ¢ T y =z
a R R R
b R R R
c R R R
x R
Y R
z R
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