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RÉSUMÉ 

 

 Dans des environnements spatiaux, nous considérons des fonctions de bien-être 

social satisfaisant les hypothèses d’Arrow, i.e. la faiblesse au sens de Pareto et 

l’indépendance des alternatives non pertinentes. Lorsque l’espace des politiques est un 

continuum unidimensionnel, une telle fonction de bien-être est déterminée par une 

collection de 2N préférences strictement quasi-concaves et une règle de bris d’égalité. 

Comme corollaire, nous obtenons que, lorsque le nombre d’électeurs est impair, le vote 

à la majorité simple est transitif si et seulement si la préférence de chaque électeur est 

strictement quasi concave. Lorsque l’espace des politiques est multidimensionnel, nous 

établissons le théorème d’impossible d’Arrow. Nous montrons, entre autres, que la 

faiblesse au sens de Pareto, l’indépendance des alternatives non pertinentes et la non-

dictature sont incompatibles si l’ensemble des alternatives possède un intérieur 

non vide et est compact et convexe. 

 

Mots clés : théorème d’Arrow, indépendance des alternatives non pertinentes 

 
 

ABSTRACT 

 

 In spatial environments, we consider social welfare functions satisfying Arrow's 

requirements, i.e., weak Pareto and independence of irrelevant alternatives. When the 

policy space is a one-dimensional continuum, such a welfare function is determined by 

a collection of 2N strictly quasi-concave preferences and a tie-breaking rule. As a 

corollary, we obtain that when the number of voters iis odd, simple majority voting is 

transitive if and only if each voter's preference is strictly quasi-concave. When the policy 

space is multi-dimensional, we establish Arrow's impossibility theorem. Among others, 

we show that weak Pareto, independence of irrelevant alternatives, and non-

dictatorship are inconsistent if the set of alternatives has a non-empty interior and it is 

compact and convex. 

 

Key words : Arrow's theorem, independence of irrelevant alternatives 
 
 



1 Introduction

A social welfare function is a procedure for aggregating pro�les of individual prefer-

ences into social orderings. Arrow's theorem shows that it is impossible for a social

welfare function to satisfy weak Pareto (if all individuals strictly prefer one alterna-

tive to another, then so does society), independence of irrelevant alternatives (the

social ranking of two alternatives only depends on the individual rankings of these al-

ternatives), and non-dictatorship when the preference domain is unrestricted. When

the set of alternatives is structured, the assumption of unrestricted domain might be

unreasonable. One important exception of this kind are spatial environments. In spa-

tial environments, alternatives are points in a Euclidean space of issue positions and

individual preferences are continuous, quasi-concave, and have bliss points. Although

the assumption of unrestricted domain is unreasonable in economic and spatial en-

vironments, it has been shown that Arrow's theorem remains valid in most of these

environments.1

There is one well-known spatial environment in which Arrow's requirements are

consistent. If the number of voters is odd and the policy space is one-dimensional,

then simple majority voting is transitive and satis�es weak Pareto, independence of

irrelevant alternatives, and anonymity (Black ,1948; Arrow, 1951, 1963). Simple ma-

jority voting is an example of an Arrovian welfare function belonging to the following

class: if the number of voters is n, �x n � 1 preferences of constant voters, and ap-

ply to each pro�le of individual preferences majority voting over this pro�le and the

n�1 �xed voters. However, a characterization of all welfare functions satisfying weak

Pareto and independence of irrelevant alternatives was missing. Our paper �lls this

gap. The class of welfare functions described above, in which the preferences of the

�xed voters are strictly quasi-concave, is characterized by weak Pareto, independence

of irrelevant alternatives, and anonymity up to a tie-breaking rule. If anonymity is

dropped, then instead of n�1 �xed preferences we need 2N �xed strictly quasi-concave

1An excellent review of the literature is Le Breton and Weymark (2000a).
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preferences.

A key step in the proof of Arrow's theorem is that decisiveness of a coalition

spreads from one pair of alternatives to all pairs of alternatives. In proving the previ-

ous fact we need to assume that each individual's preference domain is unrestricted.

This is the di�erence between one-dimensional spatial environments and environments

with an unrestricted domain. We show that in one-dimensional spatial environments

decisiveness of a coalition spreads in the following way: if a coalition is decisive over

\a preferred to b" (where a; b 2 R are such that a < b), then it is decisive over \a

preferred to c" for all c > b and over \c preferred to b" for all a < c < b. This implies

that for each coalition S, there is a point xS 2 [�1;+1] such that S is decisive

over \a preferred to b" for all xS < a < b and NnS is decisive over \c preferred to d"

for all d < c < xS. Therefore, when the peaks of S converge to �1 and the peaks

of NnS to +1, then an Arrovian welfare function chooses a strictly quasi-concave

ordering with quasi bliss point xS. The collection of 2N strictly quasi-concave prefer-

ences characterizes an Arrovian welfare function up to some tie-breaking rule. Here,

the key is to show that if the ranking over two alternatives is not determined, then

this does not cause any intransitivities, no matter what ranking we choose between

these two alternatives. Of course, this is only possible if the two alternatives belong

to opposite sides of the quasi bliss point of the social ordering and could form an

indi�erence class.

Our characterization is one of the few positive results in Arrovian social choice.

A corollary of our result is that simple majority voting is transitive if and only if

individual preferences are strictly quasi-concave.

If the policy space is multi-dimensional and unbounded, and preferences are Eu-

clidean, then Arrow's requirements are inconsistent (Border, 1984). Other proofs

show that the domain of Euclidean preferences is \saturating" and apply a result

due to Kalai, Muller, and Satterthwaite (1979) to deduce Arrow's impossibility (Le

2



Breton and Weymark, 1996, 2000a,b; Campbell, 19932). However, the proofs of these

results rely importantly on the unboundedness of the policy space. As far as we

know, Arrow's theorem has not been established in spatial environments when the

set of alternatives is compact and convex. It is natural to assume that a govern-

ment faces budget constraints and therefore the set of policy alternatives becomes

bounded. We derive Arrow's theorem in such spatial environments. If individual

preferences are Euclidean and the set of alternatives has a non-empty interior and

it is compact and convex, then weak Pareto, independence of irrelevant alternatives,

and non-dictatorship are inconsistent, i.e. again decisiveness of a coalition spreads

from one pair of alternatives to all pairs of alternatives and dictatorship results.

The paper is organized as follows. In Section 2 we introduce our notation and

the main de�nitions. In Section 3 we characterize the welfare functions satisfying

weak Pareto and independence of irrelevant alternatives if the policy space is one-

dimensional. In Section 4 we show that weak Pareto, independence of irrelevant

alternatives, and non-dictatorship are inconsistent if the policy space is compact,

convex, and at least two-dimensional. Section 5 concludes.

2 Notation and De�nitions

We use the same terminology and notation as Le Breton and Weymark (2000a). Let

N � f1; 2; : : : ; ng denote a �nite set of agents with n � 2, and let A � Rm denote a

set of alternatives. Each point in Rm identi�es the changes in the level of m di�erent

policies, for example public spending on police, health care, and so on. LetW denote

the set of all complete and transitive relations over A. An element of W is called a

weak ordering over A. Given Ri 2 W, the corresponding strict relation, Pi, and the

indi�erence relation, Ii, are de�ned as follows: for all a; b 2 A, (i) aPib, :bRia, and

(ii) aIib , aRib and bRia. Note that if :aRib, then by completeness of Ri, aRib.

Hence, :bRia is enough to describe the strict relation Pi. Let R � W.

2Campbell (1993) drops weak Pareto and imposes instead continuity of social preference.
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A (preference) pro�le is a list R � (Ri)i2N 2 RN . A (social) welfare function

associates with each pro�le a weak ordering over A. Formally, a welfare function is

a mapping f : RN ! W such that for all R 2 RN , f(R) 2 W. We call f(R) the

social ordering (that f associates with R). Note that f(R) need not belong to the

individual preference domain R. Other authors impose the restriction that any social

ordering belongs to each individual's preference domain (for example, Peters, van der

Stel, and Storcken, 1992, and Bossert and Weymark, 1993).

Arrow's requirements are as follows. The �rst axiom says that if all agents strictly

prefer a to b, then a should also be socially strictly preferred to b.

Weak Pareto: For allR 2 RN and all a; b 2 A, if for all i 2 N , aPib, then :bf(R)a.

Given R 2 RN , X � A, and j 2 N , let RjjX denote the restriction of Rj to

X, and RjX � (RijX)i2N . The second axiom says that the social ordering of two

alternatives only depends on the pro�le of individual preferences restricted to these

two alternatives.

Independence of Irrelevant Alternatives: For all R; �R 2 RN and all a; b 2 A,

if Rjfa; bg = �Rjfa; bg, then f(R)jfa; bg = f( �R)jfa; bg.

A welfare function is Arrovian if it satis�es weak Pareto and independence of ir-

relevant alternatives. A welfare function is dictatorial if there exists some agent such

that for each pro�le the social strict preference relation respects the strict preference

relation of this agent.

Non-Dictatorship: There exists no i 2 N such that for all R 2 RN and all

a; b 2 A, if aPib, then :bf(R)a.
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A welfare function treats individuals symmetrically if for all permutations of in-

dividuals' preferences, the social ordering remains unchanged.

Anonymity: For all R 2 RN and all permutations � of N , f(�(R)) = f(R).

3 One-Dimensional Policy Spaces

In this section the policy space is a one-dimensional continuum. Speci�cally, the set

of alternatives is the set of real numbers R. For example, in an election each element

of R represents a candidate's political ideology on a left-right spectrum.

Given i 2 N , a weak ordering Ri 2 W is single-peaked if there exists a point

p(Ri) 2 R, called the peak of Ri, such that for all a; b 2 R, if a < b � p(Ri) or

p(Ri) � b < a, then bPia. Let R denote the set of all single-peaked preferences over

R. Each agent i 2 N has a single-peaked preference relation over R. A single-peaked

preference Ri 2 R is symmetric if for all a; b 2 R, aRib, ja� p(Ri)j � jb� p(Ri)j.

We will give a complete characterization of all welfare functions satisfying weak

Pareto and independence of irrelevant alternatives. In this characterization the fol-

lowing weak orderings are important.

A weak ordering Ri 2 W is strictly quasi-concave, if for all a; b; c 2 R such that

a < b < c, we have :aRib or :cRib. In other words, b is never a worst alternative in

fa; b; cg and the restriction of Ri to fa; b; cg is single-peaked . Let C denote the set

of all strictly quasi-concave orderings over R.

Lemma 3.1 Let Ri 2 W. The weak ordering Ri is strictly quasi-concave if and only

if there exists a quasi bliss point p(Ri) 2 R [ f�1;+1g (for convenience we use

the same notation as for peaks) such that (i) for all a; b 2 R, if a < b < p(Ri) or

p(Ri) < b < a, then bPia, and (ii) if p(Ri) 2 R, then either (for all x 2 ]�1; p(Ri)[,

p(Ri)Pix), or (for all x 2 ]p(Ri);+1[, p(Ri)Pix).

Proof. It is easy to check that Ri is strictly quasi-concave if (i) and (ii) hold.
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Let Ri be strictly quasi-concave. For all x 2 R, let B(x;Ri) � fy 2 R j xRiyg. Let

(xk)k2N be a sequence in R such that for all k 2 N , if B(xk; Ri) 6= R, then B(xk; Ri) (

B(xk+1; Ri), and for all y 2 R, there exists k 2 N such that y 2 B(xk; Ri). Without

loss of generality, let (xk)k2N converge to p(Ri) (otherwise we choose a convergent

subsequence of (xk)k2N). We show (i) and (ii).

Let a; b 2 R be such that a < b < p(Ri) or p(Ri) < b < a. Then there exists k 2 N

such that b 2 B(xk; Ri) and jxk � p(Ri)j < jb� p(Ri)j. Thus, xkRib and a < b < xk

or xk < b < a. Because Ri is strictly quasi-concave, bPia, which is (i).

Suppose that p(Ri) 2 R but (ii) does not hold. Then for some a; b 2 R we have

a < p(Ri) < b, aRip(Ri), and bRip(Ri). Obviously, this is in contradiction to strict

quasi-concavity of Ri. �

Obviously, R � C. However, a strictly quasi-concave preference Ri may not be

single-peaked, even if p(Ri) 2 R. For example, let u : R ! R be such that for all

x 2 R, u(x) � 1
x
if x > 0 and u(x) = x if x � 0. Let Ru 2 W be such that for all

a; b 2 R, aRub, u(a) � u(b). Then Ru 2 CnR.

3.1 Decisiveness

Given S � N and a; b 2 A, we say that S is semi-decisive over \a preferred to b"

if there exists R 2 RN such that (i) for all i 2 S, aPib, (ii) for all i 2 NnS, bPia,

and (iii) af(R)b.3 Let Ds(a; b) denote the set of all coalitions that are semi-decisive

over \a preferred to b". Given a; b 2 A and R 2 R, if :bf(R)a whenever aPib for all

i 2 S, then S is said to be decisive over \a preferred to b". Let D(a; b) denote the

set of all coalitions that are decisive over \a preferred to b".

One of the important steps in Arrow's impossibility theorem is that whenever a

coalition S � N is decisive over \a preferred to b", then it is also decisive over \a

3The literature on Arrovian social choice often refers to our de�nition as \a coalition is semi-

decisive over the pair (a; b)".

6



preferred to c" and \c preferred to b" for any other alternative c. Therefore, every

coalition is either decisive over every pair of alternatives or over no pair.

Because here individual preferences are restricted to be single-peaked and the pol-

icy space is one-dimensional, decisiveness of a coalition does not spread over all pairs

of alternatives as in Arrow's original theorem. Decisiveness of a coalition expands in

a weaker form. Given a; b 2 R such that a < b, if S is semi-decisive over \a preferred

to b", then S is decisive over \a preferred to c" for all c 2 ]b;+1[ and S is decisive

over \c preferred to b" for all c 2 ]a; b[.

Lemma 3.2 Let f : RN ! W be a welfare function satisfying weak Pareto and

independence of irrelevant alternatives. Let S � N and a; b; c 2 R be such that

a < b < c or a > b > c.

(i) If S 2 Ds(a; b), then S 2 D(a; c).

(ii) If S 2 Ds(a; c), then S 2 D(b; c).

Proof. First, we show (i). Let R 2 RN be such that for all i 2 S, aPic. We have

to show that :cf(R)a. Let ~R 2 RN be such that

(a) for all i 2 N , ~Rijfa; cg = Rijfa; cg;

(b) for all i 2 S, a ~Pib and b ~Pic; and

(c) for all i 2 NnS, b ~Pia and b ~Pic.

It is easy to check that we can �nd ~R 2 RN such that (a) to (c) are satis�ed (for all

i 2 N , we can even choose ~Ri to be symmetric). By (b) and (c), for all i 2 N , b ~Pic.

Thus, by weak Pareto, :cf( ~R)b. Because S 2 Ds(a; b) and f satis�es independence

of irrelevant alternatives, (b) and (c) imply af( ~R)b. Thus, by transitivity of f( ~R),

:cf( ~R)a. Hence, by (a) and independence of irrelevant alternatives, :cf(R)a and

S 2 D(a; c), the desired conclusion.

Second, we show (ii). Let R 2 RN be such that for all i 2 S, bPic. We have to

show that :cf(R)b. Let ~R 2 RN be such that
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(a) for all i 2 N , ~Rijfb; cg = Rijfb; cg,

(b) for all i 2 S, b ~Pia and a ~Pic, and

(c) for all i 2 NnS, b ~Pia and c ~Pia.

(Again, for all i 2 N , ~Ri can be chosen to be symmetric.) By weak Pareto, :af( ~R)b.

Because S 2 Ds(a; c), we have af( ~R)c. Thus, by transitivity of f( ~R), :cf( ~R)b. By

(a) and independence of irrelevant alternatives, :cf(R)b. Hence, S 2 D(b; c), the

desired conclusion. �

3.2 Social Orderings at Maximal Con
icts

In avoiding limits of pro�les we add two non-single-peaked preferences to the set R.

Obviously, � and � are preferences over R, where � has a bliss point at +1 and �

at �1.

Let ~R � R [ f�;�g. The following lemma shows that the addition of � and �

to R has no in
uence on a welfare function satisfying weak Pareto and independence

of irrelevant alternatives.

Lemma 3.3 Let f : RN ! W be a welfare function satisfying weak Pareto and

independence of irrelevant alternatives. De�ne ~f : ~RN ! W as follows: for all

R 2 ~RN and all a; b 2 R, take �R 2 RN such that �Rjfa; bg = Rjfa; bg and set

~f(R)jfa; bg � f( �R)jfa; bg:

Then ~f is a well-de�ned welfare function satisfying weak Pareto and independence of

irrelevant alternatives. Moreover, ~f jRN = f .

Proof. Let R 2 ~RN . Because f satis�es independence of irrelevant alternatives, for

all a; b 2 R, ~f(R)jfa; bg is well-de�ned. Thus, ~f satis�es weak Pareto and indepen-

dence of irrelevant alternatives. Obviously, ~f(R) is complete. It remains to show that

~f(R) is transitive. Let a; b; c 2 R be such that a � b � c. Let �R 2 RN be such that
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for all i 2 N , (i) if Ri = �, then p( �Ri) = a, (ii) if Ri 2 R, then �Ri = Ri, and (iii)

if Ri = �, then p( �Ri) = c. By de�nition, ~f(R)jfa; b; cg = f( �R)jfa; b; cg and ~f(R) is

transitive. �

Given a coalition S � N , we consider the pro�le where the members belonging to

S announce � and the other agents announce �. Clearly, the coalitions S and NnS

disagree on every pair of di�erent alternatives. We show that the social orderings

at these pro�les of maximal con
icts are strictly quasi-concave. They also satisfy a

certain monotonicity property and determine for each pro�le the social ordering up

to some tie-breaking when social preference can be chosen to be arbitrary.

Throughout the remaining part of Subsection 3.2, let f be a welfare function

satisfying weak Pareto and independence of irrelevant alternatives. For all S � N , let

(�S;�NnS) be the pro�le R 2 ~RN such that for all i 2 S, Ri = �, and for all i 2 NnS,

Ri = �. Then for all S � N , let QS � ~f(�S;�NnS). Let Q � fQS jS � Ng. We call

Q a collection of calibration relations. We will show that Q completely determines f

(up to some tie-breaking). By Lemma 3.3, ~f satis�es weak Pareto. Thus, Q; = �

and QN = �. The following lemma speci�es some properties of the collection Q.

Lemma 3.4 (i) The collection Q is (inclusive) monotone, i.e. for all S; T � N

such that S � T , and all a; b; c; d 2 R such that a < b < c < d, (i.i) if bQSc,

then :dQT b; (i.ii) if bQSd, then :dQT c; (i.iii) if cQT b, then :aQSc; and (i.iv)

if cQTa, then :aQSb.

(ii) For all S � N , QS 2 C.

(iii) For all S; T � N , if S � T , then p(QT ) � p(QS).

Proof. (i) By de�nition, QS = ~f(�S ;�NnS) and QT = ~f(�T ;�NnT ). If bQ
Sc, then

S 2 Ds(b; c). Thus, by Lemma 3.2, S 2 D(b; d). Hence, by S � T , we have :dQT b.

Statements (i.ii), (i.iii), and (i.iv) follow similarly.
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(ii) Let a; b; c 2 R be such that a < b < c. Suppose that aQSb and cQSb. Then

by (i.i), :cQSa, and by (i.iii), :aQSc, which contradicts completeness of QS.

(iii) Suppose that p(QT ) > p(QS). Let a; b; c 2 ]p(QS); p(QT )[ be such that

a < b < c. Then aQSb and S 2 Ds(a; b). Thus, by Lemma 3.2, S 2 D(a; c). By

S � T , aQT c. This is a contradiction to a < c < p(QT ) and QT 2 C. �

Recall that a strictly quasi-concave preference Ri 2 C is either equal to � or �, or

there exists a quasi bliss point p(Ri) 2 R such that (i) for all a; b 2 R, if a < b < p(Ri)

or p(Ri) < b < a, then bPia, and (ii) either (for all x 2 ] �1; p(Ri)[, p(Ri)Pix), or

(for all x 2 ]p(Ri);+1[, p(Ri)Pix). We use the convention that p(�) � �1 and

p(�) � +1.

Next, we show that for each pro�le the social ordering is strictly quasi-concave.

Let R 2 RN be such that p(Ri1) � p(Ri2) � � � � � p(Rin). Let S0 � ;

and for all t 2 f1; 2; : : : ; ng, St � fi1; i2; : : : ; itg. Thus, Sn = N . The median

of M(R) = fp(Ri1); p(Ri2); : : : ; p(Rin); p(Q
S0); p(QS1); : : : ; p(QSn)g is the number

m(R) 2 R such that (i) m(R) 2 M(R), (ii) at least n + 1 elements of M(R) are

smaller than or equal to m(R), and (iii) at least n+ 1 elements of M(R) are greater

than or equal to m(R).

Theorem 3.1 For all R 2 RN , f(R) is strictly quasi-concave with quasi bliss point

m(R). Furthermore, if m(R) =2 fp(QS) jS � Ng, then f(R) is single-peaked.

Proof. Let R 2 RN . Without loss of generality, suppose p(R1) � p(R2) � � � � �

p(Rn). By independence of irrelevant alternatives, we have (i) f(R)j]�1; p(R1)] =

Q;j]�1; p(R1)] = � j]�1; p(R1)], (ii) for all t 2 f1; 2; : : : n� 1g,

f(R)j[p(Rt); p(Rt+1)] = QSt j[p(Rt); p(Rt+1)]; (1)

and (iii) f(R)j[p(Rn);+1[ = QN j[p(Rn);+1[ = � j[p(Rn);+1[.

Because p(Q;) = +1 and p(QN) = �1, we have m(R) 2 [p(R1); p(Rn)]. Let

a; b 2 R be such that m(R) < a < b. We show that :bf(R)a. If a � p(Rn), then the
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assertion follows from f(R)j[p(Rn);+1[ = � j[p(Rn);+1[. Let t0 2 f1; 2; : : : ; n� 1g

be such that a 2 [p(Rt0); p(Rt0+1)[ and c 2 ]a; p(Rt0+1)[ \ ]a; b[. We claim that

p(QS
t0 ) � m(R). If p(QS

t0 ) > m(R), then by Lemma 3.4 at least n + 1 numbers are

greater thanm(R), namely fp(QS0); p(QS1); : : : ; p(QS
t0 ); p(Rt0+1); p(Rt0+2); : : : ; p(Rn)g,

which contradicts the median property of m(R). Thus, p(QS
t0 ) � m(R) < a.

By (1), f(R)j[p(Rt0); p(Rt0+1)] = QS
t0 j[p(Rt0); p(Rt0+1)]. Hence, :cf(R)a. Thus,

St0 2 Ds(a; c). By Lemma 3.2 and a < c < b, St0 2 D(a; b). Hence, :bf(R)a, the

desired conclusion. Similarly it can be shown that for all a; b 2 R, if b < a < m(R),

then :bf(R)a.

Let t00 2 f1; 2; : : : ; n � 1g be such that m(R) 2 [p(Rt00); p(Rt00+1)]. If m(R) 2

]p(Rt00); p(Rt00+1)[, then f(R)j]p(Rt00); p(Rt00+1)[ = QS
t00 j]p(Rt00); p(Rt00+1)[ implies p(f(R)) =

m(R) = p(QS
t00 ) and f(R) 2 C. If m(R) 2 fp(R1); p(Rn)g, then (i) or (iii) implies

f(R) 2 C.

Suppose that m(R) = p(Rt00) and p(Rt00) =2 fp(R1); p(Rn)g. Let S � fi 2

N j p(Ri) < m(R)g and T � fi 2 N j p(Ri) � m(R)g. Then S 6= ;, S ( T , and

T 6= N . Thus, ]p(RjSj); p(RjSj+1)[ 6= ; and ]p(RjT j); p(RjT j+1)[ 6= ;. Similar arguments

as above imply that p(QT ) � m(R) � p(QS). If p(QT ) < m(R), then by (1), for

all x 2 ]p(RjT j); p(RjT j+1)[, :xf(R)m(R), and f(R) 2 C. If p(QS) > m(R), then

by (1), for all x 2 ]p(RjSj); p(RjSj+1)[, :xf(R)m(R), and f(R) 2 C. Suppose that

p(QT ) = m(R) = p(QS). By (1), f(R)j]p(RjSj); p(RjSj+1)] = QSj]p(RjSj); p(RjSj+1)]

and f(R)j[p(RjT j); p(RjT j+1)[ = QT j[p(RjT j); p(RjT j+1)[. If f(R) =2 C, then for some

a 2 ]p(RjSj); p(RjSj+1)[, af(R)m(R), and for some b 2 ]p(RjT j); p(RjT j+1)[, bf(R)m(R).

Thus, S 2 Ds(a;m(R)) and NnT 2 Ds(b;m(R)). Hence, by Lemma 3.2, S 2 D(a; b)

and NnT 2 D(a; b). Therefore, :af(R)b and :bf(R)a, which contradicts complete-

ness of f(R). Hence, f(R) 2 C.

If m(R) =2 fp(QS0

) jS 0 � Ng, then p(QT ) < m(R) < p(QS). Hence, by (1),

f(R) 2 R. �

Remark 3.1 If for all S � N , QS 2 f�;�g, then for all R 2 RN , f(R) is a single-
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peaked preference relation. �

By Theorem 3.1, for all R 2 RN , the collection Q determines the social ordering

f(R) restricted to ] �1; m(R)[ and to ]m(R);+1[ (and either on ] �1; m(R)] or

[m(R);+1[). However, the quasi bliss point m(R) needs not be the socially most

preferred alternative. Next we show that Q also determines the ranking of f(R) over

all pairs (up to some arbitrary tie-breaking).

Lemma 3.5 Let R 2 RN and a; b 2 R be such that a < b. Let S � fi 2 N j aPibg,

U � fi 2 N j bPiag, and T � Nn(S [ U). Then the following holds.

(i) If for some x 2 ]a; b[, aQSx, or for some x 2 ]�1; a[, xQSb, then :bf(R)a.

(ii) If for some x 2 ]a; b[, bQS[Tx, or for some x 2 ]b;+1[, xQS[Ta, then :af(R)b.

(iii) If the presumptions of (i) and (ii) do not hold, then for all x 2 ]a; b[, we have

:af(R)x and :bf(R)x, and for all x 2 ]�1; a[ [ ]b;+1[, we have :xf(R)a

and :xf(R)b.

Proof. By de�nition, for all i 2 T , aIib.

First, we show (i). If for some x 2 ]a; b[, aQSx, then S 2 Ds(a; x). Thus, by

Lemma 3.2 and a < x < b, S 2 D(a; b) and :bf(R)a. If for some x 2 ]�1; a[, xQSb,

then S 2 Ds(x; b). Thus, by Lemma 3.2 and x < a < b, S 2 D(a; b) and :bf(R)a.

Second, we show (ii). If for some x 2 ]a; b[, bQS[Tx, then U 2 Ds(b; x). Thus,

by Lemma 3.2 and b > x > a, U 2 D(b; a) and :af(R)b. If for some x 2 ]b;+1[,

xQS[Ta, then U 2 Ds(x; a). Thus, by Lemma 3.2 and x > b > a, U 2 D(b; a) and

:af(R)b.

Third, we show (iii). Because the presumptions of (i) and (ii) do not hold, we

have

(a) for all x 2 ]�1; a[, :xQSb;

(b) for all x 2 ]a; b[, :aQSx and :bQS[Tx; and

12



(c) for all x 2 ]b;+1[, :xQS[Ta.

Let x 2 ]�1; a[. We want to show that :xf(R)a and :xf(R)b. Because for all

i 2 N , Ri is single-peaked, we have for all i 2 T [ U , aPix and bPix. Let y 2 ]x; a[.

By (a), bQSy. Thus, T [U 2 Ds(b; y). By Lemma 3.2 and b > y > x, T [U 2 D(b; x).

Hence, :xf(R)b. By Theorem 3.1, f(R) 2 C. Thus, from x < a < b and :xf(R)b we

obtain :xf(R)a.

Let x 2 ]a; b[. We want to show that :af(R)x and :bf(R)x. Because for all

i 2 N , Ri is single-peaked, we have for all i 2 S, xPib, for all i 2 U , xPia, and for all

i 2 T , xPia and xPib. Let y 2 ]x; b[. By (b), yQSa and T [ U 2 Ds(y; a). Thus, by

Lemma 3.2 and y > x > a, T [ U 2 D(x; a) and :af(R)x. Let z 2 ]a; x[. By (b),

zQS[T b and S [ T 2 Ds(z; b). Thus, by Lemma 3.2 and z < x < b, S [ T 2 D(x; b)

and :bf(R)x.

Let x 2 ]b;+1[. We want to show that :xf(R)a and :xf(R)b. Because for all

i 2 N , Ri is single-peaked, we have for all i 2 S[T , aPix and bPix. Let y 2 ]b; x[. By

(c), aQS[Ty. Thus, S[T 2 Ds(a; y). By Lemma 3.2 and a < y < x, S[T 2 D(a; x).

Hence, :xf(R)a. By Theorem 3.1, f(R) 2 C. Thus, from a < b < x and :xf(R)a

we obtain :xf(R)b. �

In (i) and (ii) of Lemma 3.5, the ranking of f(R) over fa; bg is uniquely determined

by Q. If neither (i) nor (ii) hold, then the ranking of f(R) over fa; bg can be taken

arbitrarily without causing intransitivities.

3.3 The Characterization

In the previous subsection we identi�ed a monotone collection Q of strictly quasi-

concave orderings from a welfare function satisfying weak Pareto and independence of

irrelevant alternatives. Theorem 3.1 and Lemma 3.5 imply that the welfare function

is completely determined by Q. These results reveal the characteristics of such a

welfare function.
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In formulating the characterization result, we need a precise de�nition of tie-

breaking. Given a; b 2 R, let Wfa;bg denote the set of weak orderings over fa; bg.

Obviously, only three orderings over fa; bg are possible: a is strictly preferred to b,

a and b are indi�erent, and b is strictly preferred to a. A tie-breaking rule � is a

family of functions �fa;bg, indexed by fa; bg (where a; b 2 R and a 6= b), fromWN
fa;bg to

Wfa;bg. The function �fa;bg assigns to each pro�le of orderings over fa; bg an element

inWfa;bg. Tie-breaking should not be read to be strict because the resulting ordering

over fa; bg may be indi�erence.

Fixed-Strictly-Quasi-Concave Welfare Function, fQ� : Given a monotone col-

lection Q of strictly quasi-concave orderings such that Q; = � and QN = �, and

a tie-breaking rule � , the �xed-strictly-quasi-concave welfare function fQ� associated

with Q and � is de�ned as follows. Let R 2 RN and a; b 2 R be such that a � b. Let

S � fi 2 N j aPibg, U � fi 2 N j bPiag, and T � Nn(S [ U). Then

(�) if a = b, then afQ� (R)b;

(�) if a < b and for some x 2 ]a; b[, aQSx, or for some x 2 ] �1; a[, xQSb, then

afQ� (R)b and :bf
Q
� (R)a;

(
) if a < b and for some x 2 ]a; b[, bQS[Tx, or for some x 2 ]b;+1[, xQS[Ta, then

bfQ� (R)a and :afQ� (R)b; and

(�) if a < b and (a) for all x 2 ] � 1; a[, :xQSb, (b) for all x 2 ]a; b[, :aQSx

and :bQS[Tx, and (c) for all x 2 ]b;+1[, :xQS[Ta, then fQ� (R)jfa; bg �

�fa;bg(Rjfa; bg). �

Lemma 3.6 A �xed-strictly-quasi-concave welfare function is a well-de�ned welfare

function satisfying weak Pareto and independence of irrelevant alternatives.

Proof. Let Q be a monotone collection of strictly quasi-concave orderings and � be

a tie-breaking rule. Let fQ� be de�ned as above.
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First, we prove well-de�nedness of fQ� . We have to show that (�) and (
) exclude

each other.

Let a; b 2 R be such that (�) holds for a and b. Thus, a < b. If for some

x 2 ]a; b[, aQSx, then by strict quasi-concavity of QS and a < x < b, :bQSx. Thus,

by transitivity, :bQSa. If for some x 2 ]�1; a[, xQSb, then by strict quasi-concavity

of QS and x < a < b, :bQSa. Hence, in both cases we have :bQSa and aQSb.

Because Q is monotone and aQSb, by (i.ii) of Lemma 3.4 we have for all y 2 ]a; b[,

:bQS[T y. Because Q is monotone and aQSb, by (i.i) of Lemma 3.4 we have for all

y 2 ]b;+1[, :yQS[Ta. Hence, (
) does not hold.

Second, we show that fQ� is a welfare function. Let R 2 RN . By de�nition, fQ� (R)

is complete. It remains to show that fQ� (R) is transitive. Let a; b; c 2 R be such that

a < b < c. If :afQ� (R)b and :cf
Q
� (R)b, then fQ� (R)jfa; b; cg is transitive. Thus, in

proving transitivity of fQ� (R), it su�ces to show the following two implications: if

afQ� (R)b, then :cf
Q
� (R)a; and if cfQ� (R)b, then :af

Q
� (R)c.

We only prove the �rst implication. The second implication follows similarly. Let

afQ� (R)b. Then (�) or (�) holds for a and b. Let S � fi 2 N j aPibg, U � fi 2

N j bPiag, T � Nn(S [ U), and S 0 � fi 2 N j aPicg. Because a < b < c and for all

i 2 N , Ri is single-peaked, we have S [ T � S 0.4 We distinguish two cases.

Case 1: afQ� (R)b because of (�).

If for some x 2 ]a; b[, aQSx, then, because Q is monotone and S � S 0, for some

y 2 ]x; b[, aQS0

y. Since a < b < c, we have y 2 ]a; c[ and by (�), :cfQ� (R)a. If

for some x 2 ] � 1; a[, xQSb, then, because Q is monotone and S � S 0, for some

y 2 ]x; a[, yQS0

b. Thus, by strict quasi-concavity of QS0

and y < a < b < c, yQS0

c.

Hence, by (�), :cfQ� (R)a.

Case 2: afQ� (R)b because of (�).

We show that (�) holds for a and c. Let x 2 ]b; c[. Then by (�), part (c), :xQS[Ta.

Thus, aQS[Tx. Because Q is monotone and S [ T � S 0, for some y 2 ]x; c[, aQS0

y.

4Note that this implication remains true if for all i 2 N , Ri is strictly quasi-concave.
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Thus, by y 2 ]a; c[ and (�), :cfQ� (R)a, the desired conclusion.

Third, we show that fQ� satis�es weak Pareto and independence of irrelevant al-

ternatives. Because Q; = � and QN = �, it is easy to check that fQ� satis�es

weak Pareto. Obviously, by de�nition, fQ� satis�es independence of irrelevant alter-

natives. �

The following theorem characterizes the class of welfare functions satisfying Ar-

row's requirements on the domain of all single-peaked preferences over a one-dimensional

policy space.

Theorem 3.2 On the domain of single-peaked preferences, the class of �xed-strictly-

quasi-concave welfare functions is characterized by weak Pareto and independence of

irrelevant alternatives.

Proof. From Lemma 3.6 it follows that a �xed-strictly-quasi-concave welfare func-

tion is a well-de�ned welfare function satisfying weak Pareto and independence of

irrelevant alternatives.

Conversely, let f be a welfare function satisfying weak Pareto and independence

of irrelevant alternatives. Lemma 3.4 shows the existence of a monotone collection

Q of strictly quasi-concave orderings. Let R 2 RN and a; b 2 R. From Lemma 3.5

it follows that f(R)jfa; bg satis�es the de�nitions (�), (�), and (
). Finally, if (�)

holds, then de�ne �fa;bg(Rjfa; bg) � f(R)jfa; bg. Now it is obvious that f is a �xed-

strictly-quasi-concave welfare function associated with Q and � . �

Theorem 3.2 remains valid if the set of alternatives is a open or compact interval

and/or each individual's preference domain is the set of all symmetric single-peaked

preferences.
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3.4 Majority Voting

In this subsection we explore the relation between �xed-strictly-quasi-concave welfare

functions and majority voting. Under majority voting, for a given pro�le of prefer-

ences, one alternative is ranked above another if and only if a majority of voters

weakly prefers the former alternative to the latter. If the number of individuals is

odd, majority voting is a well-de�ned welfare function (Black, 1948; Arrow, 1951).

However, if the number of individuals is even, then the social indi�erence relation

may be intransitive. In resolving this intransitivity, we add an odd number of �xed

strictly quasi-concave relations and determine the majority preference relation for the

pro�le of individual's preferences and the �xed voter's preferences.

Let O � (O0; O1; : : : ; On) denote a pro�le of n + 1 �xed voters' preferences such

that O0 = �, On = �, and for all t 2 f1; : : : ; n � 1g, Ot 2 C. Let Q(O) denote the

collection of strictly quasi-concave preferences associated with O, i.e. for all S � N ,

QS = OjSj. We call O strongly monotone when for all S; T � N such that S � T and

all a; b 2 R such that a < b, (i) if aOjSjb, then aOjT jb; and (ii) if bOjT ja, then bOjSja.

Obviously, if O is strongly monotone, then Q(O) is monotone. Given a strongly

monotone pro�le O of n+1 �xed voters, the majority welfare function gO associated

with O is de�ned as follows. For all R 2 RN and all a; b 2 R,

agO(R)b,jfi 2 N j :bRiagj [ jft 2 f0; 1; : : : ; ng j :bOtagj

� jfi 2 N j :aRibgj [ jft 2 f0; 1; : : : ; ng j :aOtbgj:

The majority tie breaking rule �O associated with O is de�ned as follows: for all

R 2 RN and all a; b 2 R, �Ofa;bg(Rjfa; bg) � gO(R)jfa; bg.

If O is a strongly monotone pro�le of n+1 �xed voters, then the majority welfare

function gO is the �xed-strictly-quasi-concave welfare function associated with Q(O)

and the majority tie-breaking rule �O.

Proposition 3.1 If O is a strongly monotone pro�le of n + 1 �xed voters, then

gO = f
Q(O)

�O
.
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Proof. Let R 2 RN and a; b 2 R be such that a < b. Let S � fi 2 N j aPibg,

U � fi 2 N j bPiag, and T � Nn(S [ U). It su�ces to show that f
Q(O)

�O
jfa; bg =

gO(R)jfa; bg.

Let af
Q(O)

�O
(R)b. If af

Q(O)

�O
(R)b because of (�), then by de�nition of �O, agO(R)b.

If af
Q(O)

�O
(R)b because of (�), then :bOjSja and because O is strongly monotone, at

least n + 1 voters strictly prefer a to b, namely S [ fjSj; jSj + 1; : : : ; jN jg. Thus,

:bgO(R)a. Similarly it can be shown that bf
Q(O)

�O
(R)a implies bgO(R)a.

Let agO(R)b. First, we show that if :bOjSja, then (
) does not hold. Because O is

strongly monotone, we have :bOjS[T ja. Thus, by strict quasi-concavity of OjS[T j, for

all x 2 ]a; b[, :bOjS[T jx, and for all x 2 ]b;+1[, :xOjS[T ja, and (
) does not hold.

Thus, if :bOjSja, then (�) or (�) holds for a and b and by de�nition, af
Q(O)

�O
(R)b.

Similarly it can be shown if bgO(R)a and :aOjS[T jb, then (�) does not hold and

bf
Q(O)

�O
(R)a.

If bOjSja and aOjS[T jb, then (�) and (
) do not hold and by (�), f
Q(O)

�O
jfa; bg =

gO(R)jfa; bg, the desired conclusion. �

If fQ� is an anonymous welfare function, then for all coalitions S, QS depends

only on the cardinality of jSj. In particular, the pro�le (Q;; Qf1g; Qf1;2g; : : : ; QN) is a

pro�le of n+1 �xed voters. However, majority welfare functions are not characterized

by weak Pareto, independence of irrelevant alternatives, and anonymity. This is due

to the fact that the tie breaking rule � need not be the majority tie breaking rule

associated with the pro�le of n+ 1 �xed voters.

If n is odd, for all k 2 f0; 1; : : : ; 1
2
(n � 1)g, Ok = �, and for all l 2 f1

2
(n � 1) +

1; : : : ; ng, Ol = �, then Theorem 3.1 and Proposition 3.1 yield Black's celebrated

median voter theorem saying that the median of the individual peaks is equal to the

alternative that is top-ranked according to simple majority preference. Let gm denote

the simple majority welfare function. As an application of our results we show the

following. If the number of voters is odd and the policy space is one-dimensional,
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then simple majority voting is transitive if and only if each voter's preference relation

is strictly quasi-concave.

Theorem 3.3 Let jN j be odd and jN j 6= 1. The domain of strictly quasi-concave

preferences is the unique maximal domain �RN such that

(i) RN � �RN � WN and

(ii) simple majority voting is transitive on the domain �RN .

Proof. Obviously, jN j � 3. It is straightforward to adjust the de�nition of a �xed-

strictly-quasi-concave welfare function to CN and to show that Lemma 3.6 remains

true. Hence, by Proposition 3.1, simple majority voting is transitive on the domain

CN .

Suppose that �RN is a domain such that RN � �RN and majority voting is tran-

sitive. Thus, gm is a welfare function with domain �RN satisfying weak Pareto and

independence of irrelevant alternatives. Suppose that �RnC 6= ;. Let R0 2 �RnC.

De�ne f : RNnfng ! W as follows: for all R 2 RNnfng, f(R) � gm(R;R0). Because

gm is simple majority voting and jN j � 3, f satis�es weak Pareto. Thus, f is a wel-

fare function satisfying weak Pareto and independence of irrelevant alternatives. Let

S � f1; : : : ; 1
2
(jN j � 1)g. By de�nition of f and the fact that gm is simple majority

voting, we have ~f(�S;�Nn(S[fng)) = R0. Because R0 is not strictly quasi-concave,

this contradicts Lemma 3.4. �

4 Multi-Dimensional Policy Spaces

This section considers environments where the set of alternatives is multi-dimensional

and connected. Let A � Rm be a set of alternatives such that the relative interior of

A in Rm is non-empty. A preference relation Ri 2 W is Euclidean if there exists a

bliss point p(Ri) 2 A such that for all a; b 2 A, aRib , ka � p(Ri)k � kb � p(Ri)k
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(here k � k denotes the Euclidean norm in Rm). In this section, R denotes the set of

all Euclidean preferences over A.

For the special case of A = Rm , Border (1984) and Le Breton and Weymark (1996)

establish Arrow's theorem. For A = Rm
+ , Le Breton and Weymark (2000a,b) show

Arrow's theorem. However, all these results rely importantly on the unboundedness

of the set of alternatives. In real life, policy makers face budget constraints and these

results do not apply.

We establish the following theorem: Arrow's requirements are inconsistent if the

set of alternatives has a non-empty and connected interior and it is contained in the

closure of its interior (i.e. its boundary has no \tails").

Let intA denote the interior of A in Rm and cl(A) the closure of A in Rm .

Theorem 4.1 Let A � Rm be such that intA 6= ;, intA is connected, and A �

cl(intA). If m � 2, then weak Pareto, independence of irrelevant alternatives, and

non-dictatorship are inconsistent on the domain RN .

In particular, Theorem 4.1 yields Arrow's theorem for compact and convex sets

of policy alternatives with non-empty interior.

If the interior of the set of alternatives is non-empty and not connected, then an

Arrovian social welfare function may not be dictatorial.

Example 4.1 Let m � 2, A1 � [0; 1]� [0; 1], A2 � [0; 1]� [9; 10], and A � A1 [ A2.

For all R 2 RN , let '(R)jA1 = R1jA1, '(R)jA2 = R2jA2, and for all a 2 A1 and all

b 2 A2, '(R)jfa; bg = R1jfa; bg. Then ' is an Arrovian welfare function satisfying

non-dictatorship. �

The conclusion of Example 4.1 does not remain true if the sets A1 and A2 are

connected through a line segment, for example if A = A1 [ A2 [ [(0; 0); (0; 10)]. For

this set of alternatives an Arrovian welfare function must be dictatorial.5

5By Theorem 4.1, f jA1 and f jA2 are dictatorial. Because A1 and A2 are connected through the

line segment [(0; 0); (0; 10)] it follows from Theorem 3.2 that the dictator of f jA1 and f jA2 is the

same and f is dictatorial.
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If the boundary of A contains tails, then again an Arrovian welfare function may

not be dictatorial.

Example 4.2 Let m � 2, N � f1; 2g, B � [0; 1]� [0; 1], and L � ](0; 1); (0; 2)]. Let

A � B [ L. For all R 2 RN and all a; b 2 A, (i) if a; b 2 L, a2 < b2, and for some

i 2 N , aPib, then :bf(R)a, and (ii) otherwise, f(R)jfa; bg = R1jfa; bg. We show

that f is a welfare function.

Claim: For all R 2 RN , f(R) is transitive.

Proof of Claim. If p(R1) 2 B, then f(R) = R1. Let p(R1) 2 L and a; b; c 2 A.

If a; b; c 2 B or a; b; c 2 L, then it is easy to check that f(R)jfa; b; cg is transitive.

If a 2 L and b; c 2 B, then f(R)jfa; b; cg = R1jfa; b; cg and f(R)jfa; b; cg is tran-

sitive. Let a; b 2 L and c 2 B. Then f(R)jfa; cg = R1jfa; cg and f(R)jfb; cg =

R1jfb; cg. Obviously, if f(R)jfa; bg = R1jfa; bg, then f(R)jfa; b; cg is transitive. Let

f(R)jfa; bg 6= R1jfa; bg. Without loss of generality, suppose that a2 < b2. Thus, by

(i), :bf(R)a, and a2 � p2(R1). Then aP1c and :cf(R)a. Hence, f(R)jfa; b; cg is

transitive. �

Now it is easy to check that f is a welfare function satisfying weak Pareto, inde-

pendence of irrelevant alternatives, and non-dictatorship. �

4.1 Proof of Theorem 4.1

Let6 f be a welfare function satisfying weak Pareto and independence of irrelevant

alternatives. Given X � A, let fX denote the restriction of f to the set of alternatives

X. Formally, for all R 2 RN such that for all i 2 N , p(Ri) 2 X, let fX(RjX) �

f(R)jX. It is straightforward that fX inherits weak Pareto and independence of

irrelevant alternatives from f .

6The �rst version of the paper used Theorem 3.2 to prove Theorem 4.1 for the case when A is

compact and convex. A proof using Arrow's theorem was suggested by John Duggan to the �rst

author while he was visiting University of Rochester. Independently the second author established

the proof below.
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We introduce additional notation. Let a; b; c 2 Rm be three distinct alternatives.

Let [a; b] denote the line segment between a and b, i.e. [a; b] � f�a + (1 � �)b j� 2

[0; 1]g. Let H(a; b) denote the hyperplane that bisects [a; b] perpendicularly. In the

non-degenerate case, that is a, b, and c are non-colinear, the hyperplanes H(a; b),

H(a; c), and H(b; c) determine six disjoint open cones, say \(abc), \(acb), \(bac),

\(bca), \(cab), and \(cba) (see Figure 1). We named these cones such that for all

Ri 2 R, p(Ri) 2 \(acb) , aPicPib. The same holds for the other cones. Note that

the collective boundary of \(abc) and \(acb) is a subset of H(b; c). Let \(a(bc))

denote the set of all points x 2 H(b; c) such that for Ri 2 R, if p(Ri) = x, then

aPibIic.

Given a 2 Rm and � > 0, let
J

(a; �) denote the open ball with center a and radius

�, i.e.
J

(a; �) � fx 2 Rm j ka� xk < �g. Given a; b; c 2 Rm , let plane(a; b; c) denote

the plane spanned by a, b, and c, i.e. plane(a; b; c) � fa+ �(b� a) + �(c� a) j�; � 2

Rg. Finally, let 4(a; b; c) denote the triangle with corner points a, b, and c, i.e.

4(a; b; c) � f�a + �b + (1 � � � �)c j�; � � 0&� + � � 1g. The baricenter of

4(a; b; c) is the point 1
3
(a+ b + c).

The following lemma generalizes Lemma 3.2.

Lemma 4.1 Let S � N and a; b 2 A be such that a 6= b. Let c 2 Anfa; bg be such

that \(abc) \ A 6= ;, \(bac) \ A 6= ;, \(b(ac)) \ A 6= ;, and \(bca) \ A 6= ;. If

S 2 Ds(a; b), then S 2 D(a; c).

Proof. Let R 2 RN be such that for all i 2 S, aPic. Let S 0 � fi 2 N j aPicg,

T � fi 2 N j aIicg, and V � fi 2 N j cPiag. Because \(abc), \(bac), \(b(ac)), and

\(bca) have a non-empty intersection with A, there exists ~R 2 RN such that for all

i 2 S, a ~Pib ~Pic, for all i 2 S 0nS, b ~Pia ~Pic, for all i 2 T , b ~Pia~Iic, and for all i 2 V ,

b ~Pic ~Pia. By S 2 Ds(a; b) and independence of irrelevant alternatives, af( ~R)b. By

weak Pareto, :cf( ~R)b. Thus, by transitivity of f( ~R), :cf( ~R)a. Hence, by indepen-

dence of irrelevant alternatives, :cf(R)a and S 2 D(a; c), the desired conclusion. �
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Note that if A is the real line, then the assumptions of Lemma 4.1 only hold if

a < b < c or a > b > c. While in the one-dimensional case, Lemma 4.1 implies only a

limited decisiveness power, in the multi-dimensional case decisiveness appears to be

unbounded.

For the moment, suppose that A is convex. Let a; b; c 2 A be three distinct

alternatives. Then \(abc)\A 6= ;, \(bac)\A 6= ;, \(b(ac))\A 6= ;, and \(bca)\A 6=

; whenever \(abc)\A 6= ; and \(bca)\A 6= ;. Because A is convex \(abc)\A 6= ; if

the baricenter of 4(a; b; c) belongs to the same half plane to which c belongs induced

by the line containing [a; b] in plane(a; b; c). This means that 4(a; b; c) is acute at c.

Similarly \(bca) \ A 6= ; if 4(a; b; c) is acute at a. This is accomplished if c belongs

to Y (a; b) � fx 2 An
J

(1
2
(a + b); 1

2
ka � bk) j x is in the same open halfspace as b,

where this halfspace is induced by the hyperplane through a perpendicular to [a; b]g

(see Figure 2).

These considerations together with Lemma 4.1 yield the following.

Lemma 4.2 Let A be convex and a; b 2 A be such that a 6= b. If S 2 Ds(a; b), then

for all c 2 Y (a; b), S 2 D(a; c).

The following lemma expands this decisiveness power even further if
J

(a; ka�bk)

is a subset of A. Given a set X � Rm , let @X � cl(X)n intX denote the boundary

of X.

Lemma 4.3 Let A be convex and a; b 2 A be such that a 6= b and
J

(a; ka�bk) � A.

If S 2 Ds(a; b), then for all c 2 Anfag, S 2 D(a; c).

Proof. Note that by
J

(a; ka�bk) � A, [x2@
J

(a;ka�bk)Y (a; x) = Anfag. By Lemma

4.2, for all c 2 Y (a; b) \ @
J

(a; ka � bk), S 2 D(a; c). Because S 2 D(a; c) implies

S 2 Ds(a; c), Lemma 4.2 implies that for all c 2 Y (a; b) \ @
J

(a; ka � bk) and all

c0 2 Y (a; c), S 2 D(a; c0). Hence, for all c 2 Anfag, S 2 D(a; c). �
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Next by applying Lemma 4.3 and Arrow's theorem we show that if the set of

alternatives is an open ball, then f is dictatorial.

Lemma 4.4 Let x 2 Rm , � > 0, and A =
J

(x; �). Then f is dictatorial.

Proof. Let a; b 2
J

(x; �) be such that a 6= b. Because a; b =2 @
J

(x; �), there exists

c 2
J

(x; �) such that 4(a; b; c) is acute. But then the baricenter of 4(a; b; c) belongs

to 4(a; b; c). Hence, for all u; v; w 2 fa; b; cg such that fu; v; wg = fa; b; cg, \(uvw)\
J

(x; �) 6= ;.7 Applying Arrow's theorem yields that f fa;b;cg is dictatorial with dictator

ifa;b;cg. Since c 2
J

(x; �), there exists �0 > 0 such that
J

(c; �0) �
J

(x; �). Now

we can �nd a0; b0 2
J

(c; �0) such that 4(a0; b0; c) is acute and
J

(c; ka0 � ck) �
J

(c; �0). Similarly to 4(a; b; c), Arrow's theorem implies that f fa
0;b0;cg is dictatorial

with dictator ifa0;b0;cg. Because fifa0;b0;cgg 2 D(c; a0) and
J

(c; ka0 � ck) �
J

(x; �),

Lemma 4.3 implies that for all y 2
J

(x; �)nfcg, fifa0;b0;cgg 2 D(c; y). Therefore,

fifa0;b0;cgg 2 D(c; a) and fifa;b;cgg 2 D(c; a). Thus, ifa0;b0;cg = ifa;b;cg.

Hence, we have shown that for all a; b 2
J

(x; �) such that a 6= b, there exists

c 2
J

(x; �) and ifa;b;cg 2 N such that ifa;b;cg is decisive over \a preferred to b",

over \b preferred to a", over \c preferred to a", and for all y 2
J

(x; �)nfcg, over

\c preferred to y". Clearly it follows that ifa;b;cg is the same individual for all those

a; b; c 2
J

(x; �). Let i denote this individual. Thus, for all a; b 2
J

(x; �) such that

a 6= b, i is decisive over \a preferred to b". Hence, f is dictatorial. �

Next we show that f intA is dictatorial if intA is connected.

Lemma 4.5 Let intA be non-empty and connected. Then f intA is dictatorial.

Proof. First, note that for all x 2 intA there is some �x > 0 such that
J

(x; �x) �

intA. Hence, by Lemma 4.4, f
J

(x;�x) is dictatorial, say with dictator ix.

Let a; b 2 intA be such that a 6= b. It is su�cient to show that ia = ib and ia is

decisive over \a preferred to b".

7In other words, the set fa; b; cg is a free triple.
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Because intA is connected, there is a path in intA from a to b. Clearly, the path

is compact and therefore, there exists a sequence c0; c1; : : : ; ck on this path and � > 0

such that (i) c0 = a and ck = b, (ii) for all t 2 f0; 1; : : : ; kg,
J

(ct; �) � intA, (iii) for

all t 2 f1; : : : ; kg,
J

(ct�1; �) \ fct; ct+1; : : : ; ckg = fctg. For all t 2 f0; 1; : : : ; kg, let

it denote the dictator of f
J

(ct;�).

By (i), (ii), and (iii), it follows that ia = i0 = i1 = � � � = ik = ib. Thus, ia = ib.

For all t 2 f1; : : : ; k � 1g, let Rt
ia
2 R be such that p(Rt

ia
) = ct�1. Thus, by (iii),

ct�1P
t
ia
ctP

t
ia
b. Using these preferences, the fact that ia = ik�1 = ib, (iii), and transi-

tivity, it follows that ia is decisive over \ck�2 preferred to b". Then, by ia = ik�2 = ib

and the previous fact, ia is decisive over \ck�3 preferred to b". Continuing in this way

it follows that for all t 2 f1; : : : ; kg, ia is decisive over \ck�t preferred to b". Hence,

ia is decisive over \a preferred to b", the desired conclusion. �

Our �nal lemma completes the proof of Theorem 4.1. If AnintA contains no

\tails", i.e. A � cl(intA), then dictatorship on the interior of A expands to the whole

set A.

Lemma 4.6 Let intA be non-empty and connected, and A � cl(intA). If f intA is

dictatorial, then f is dictatorial.

Proof. Without loss of generality, let 1 be the dictator of f intA. We show that 1 is

the dictator of f .

Let a; b 2 A be such that a 6= b. Let R 2 RN be such that aP1b. It su�ces to

show that :bf(R)a.

Let S � fi 2 N j aPibg, T � fi 2 N j aIibg, and V � fi 2 N j bPiag. Because

A � cl(intA) and intA is connected, there exists a path from a to b in intA such

that a and b are the only possible points on this path belonging to An intA. Thus,

intA \H(a; b) 6= ;. Let h 2 intA \ H(a; b) be such that h 6= 1
2
(a + b) and R0 2 RN

be such that for all i 2 S, p(R0
i) = a, for all i 2 T , p(R0

i) = h, and for all i 2 V ,
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p(R0
i) = b. Thus, by R0jfa; bg = Rjfa; bg and independence of irrelevant alternatives,

f(R)jfa; bg = f(R0)jfa; bg: (2)

We consider four cases.

Case 1: a; b 2 intA.

Then for all i 2 N , p(R0
i) 2 intA. Because f intA is dictatorial with dictator 1 and

1 2 S, it follows that :bf(R0)a. Hence, by (2), :bf(R)a, the desired conclusion.

Case 2: a 2 intA and b 2 An intA.

Because a 2 intA, for some 0 < � < 1
4
ka � bk we have

J
(a; �) � intA. Let

c 2
J

(a; �)\ plane(a; b; h) \ @
J

(1
2
(a + b); 1

2
ka � bk) be such that kh � ck < kh �

ak. Because h 2 intA \ H(a; b) and by our choice of c, h 2 @\(c(ba)). Thus,

\(cba)\ intA 6= ;. Let R00 2 RN be such that for all i 2 S [ T , R00
i = R0

i, and

for all i 2 V , p(R00
i ) 2 \(cba)\ intA. Then by construction we have for all i 2 S,

aP 00
i cP

00
i b, for all i 2 T , cP 00

i aI
00
i b, and for all i 2 V , cP 00

i bP
00
i a. In particular we have

R00jfa; bg = R0jfa; bg = Rjfa; bg. By a; c 2 intA and aP 00
1 c, Case 1 yields :cf(R00)a.

By weak Pareto, :bf(R00)c. Thus, by transitivity of f(R00), :bf(R00)a. Hence, by

independence of irrelevant alternatives, f(R00)jfa; bg = f(R)jfa; bg and :bf(R)a, the

desired conclusion.

Case 3: a 2 An intA and b 2 intA.

By taking c close to b in the interior of A such that 4(a; b; c) is rightangeled

at c and h is closer to b than to c and observing that \(bac)\ intA 6= ; because

h 2 \((ba)c) is on the boundary, we deduce similarly to Case 2 that :bf(R)a.

Case 4: a; b 2 An intA.

Because A � cl(intA), we can �nd c 2 intA such that kc�ak < kc� bk. By Cases

2 and 3 and transitivity of f(R0) it follows that :bf(R0)a. Hence, by (2), :bf(R)a,

the desired conclusion. �
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5 Conclusion

In this paper we solve a classical open problem in Arrovian social choice. For a one-

dimensional policy space and the domain of single-peaked preferences, we characterize

the social welfare functions satisfying weak Pareto and independence of irrelevant

alternatives. As a corollary we obtain that majority voting is transitive if and only if

the number of individuals is odd and individual preferences are strictly quasi-concave.

A parallel line of research considers social choice functions. In this case, the ob-

jective is to choose for each admissible set, called an agenda, the socially optimal

alternatives in this set. Arrow's choice axiom requires that if for an admissible set

and some admissible subset of it, some choices made at the former set belong to the

smaller set, then the choices at the latter set are exactly the choices made at the for-

mer set that belong to the smaller set (Arrow, 1959).8 In spatial environments with

one-dimensional policy spaces and agenda domain consisting of all compact intervals,

the social choice functions satisfying weak Pareto, Arrow's choice axiom, and indepen-

dence of infeasible alternatives have been investigated (Moulin, 1984; Ehlers, 2001).

These papers obtain characterizations of the \generalized median rules" by these and

additional axioms. A generalized median rule assigns to each compact interval and

each pro�le the point belonging to the compact interval that is closest to the median

of the peaks reported by the voters and 2N �xed voters. The quasi bliss points of the

2N �xed strictly quasi-concave preferences play the role of these �xed voters. The

quasi bliss point of the social ordering chosen by an Arrovian welfare function for a

pro�le of preferences is the outcome of the generalized median rule applied to this

pro�le of quasi bliss points. However, the natural correspondence between generalized

median rules and Arrovian welfare functions fails because the median may not be the

socially most preferred alternative. The class of welfare functions underlying median

rules is smaller than the class of Arrovian welfare functions: in the former the social

8Dutta, Jackson, and Le Breton (2001) consider Arrovian-type axioms in elections in which

candidates have the possibilty to withdraw. See also Ehlers and Weymark (2001).
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ordering is single-peaked.

The same applies to the strand of literature on strategy-proof social choice rules

when the set of alternatives is one-dimensional (Moulin, 1980; Border and Jordan,

1983; Kim and Roush, 1984; Barber�a, Gul, and Stacchetti, 1993). For the case of

a �nite set of alternatives and unrestricted domain, Satterthwaite (1975) associates

with each social choice rule satisfying strategy-proofness and unanimity an Arrovian

welfare function. For his construction it is essential that any pair of alternatives can

be moved to the top two positions in each agent's preference relation. It is obvious

that this trick does not work in spatial environments.

For the case when preferences are Euclidean and the set of alternatives is Rm

or Rm
+ (where m � 2), Arrow's theorem has been previously established. However,

these proofs do not apply for instance to the triangle with endpoints (0; 0), (1; 0),

and (0:5; 0:1). Then it is not possible to �nd a point x belonging to this triangle

such that (0; 0), x, and (1; 0) are a free triple. We are the �rst to show Arrow's

theorem when the set of alternatives is compact and convex. Here, we could have

tried to follow another classical method of proof. From a social welfare function

satisfying weak Pareto and independence of irrelevant alternatives we could have

constructed a two-agents social choice function C with compact and convex agenda

domain (including line segments) as follows: �x two coalitions S and NnS (where

S 6= ; and S 6= N) and consider only pro�les where all agents belonging to S have

the same preference relation and all agents belonging toNnS have the same preference

relation. For each compact and convex agenda A0 and each pro�le (RS; RNnS) 2 R�R

(here S denotes \agent 1" and NnS \agent 2"), let C choose the quasi bliss point

of f(RS; RNnS)j[p(RSjA0); p(RNnSjA
0)]. Since at pro�les with only two peaks, the

weak Pareto set in A0 is the line segment [p(RSjA0); p(RNnSjA0)] it is easy to see

that C satis�es weak Pareto, Arrow's choice axiom, and independence of infeasible

alternatives. Then we could apply Duggan's (1996) theorem for spatial environments

saying that C must be dictatorial with dictator S or NnS.9 However, Duggan's

9Duggan's (1996) theorem does not hold if the agenda domain consists only of non-degenerate

28



theorem requires the preference domain to contain non-Euclidean preferences and

our impossibility result does not.

compact and convex sets and preferences are Euclidean. Then Bergson-Samuelson welfare functions

are Arrovian (Le Breton and Weymark, 2000b).
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Figure 1: Illustration of the sets \(abc), \(acb), \(bac), \(bca), \(cab), and \(cba)

for non-colinear a, b, and c in R2 .
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Y (a; b)

qa qb&%
'$

Figure 2: If A = R2 , then Y (a; b) is the half space right of the perpendicular to [a; b]

through a excluding the set
J

(1
2
(a+ b); 1

2
ka� bk).

34


