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RESUME

Cet article analyse les modeles de régressions empilées avec régresseurs intégrés
et erreurs stationnaires. En ajoutant des retards et des avances des premiéres différences
des régresseurs et en estimant le modeéle qui en résulte par moindres carrés quasi-
généralisés, nous obtenons un estimateur efficace du vecteur de cointégration qui a une
loi limite normale mixte. Les résultats de simulation suggérent que ce nouvel estimateur se
compare favorablement aux autres déja proposeés dans la littérature. Ce nouvel estimateur
est utilisé pour tester la théorie de la parité des pouvoirs d'achat (PPA) parmi les pays du
G-7. Le test nous permet de rejeter I'hypothése nulle de la parité des pouvoirs d'achat
pour la plupart des pays.

Mots clés : régressions empilées, estimation efficace, parité des pouvoirs d'achat,
cointégration

ABSTRACT

This paper studies seemingly unrelated linear models with integrated regressors
and stationary errors. By adding leads and lags of the first differences of the regressors
and estimating this augmented dynamic regression model by feasible generalized least
squares using the long-run covariance matrix, we obtain an efficient estimator of the
cointegrating vector that has a limiting mixed normal distribution. Simulation results
suggest that this new estimator compares favorably with others already proposed in the
literature. We apply these new estimators to the testing of purchasing power parity (PPP)
among the G-7 countries. The test based on the efficient estimates rejects the PPP
hypothesis for most countries.

Key words : seemingly unrelated regressions, efficient estimation, purchasing power parity,
cointegration



1 Introduction

Zellner (1962) showed that a feasible generalized least squares (FGLS) estimator is efficient in the seemingly
unrelated regression (SUR) model in which regressors are stationary and errors are independent and identical
(iid) over time. The efficiency gain is obtained by exploiting cross-sectional correlation information among
individual regression equations. Park and Ogaki (1990) demonstrated that this is not true in general if the
system of regression equations consists of nonstationary time series regression models that allow for endogenous
regressors and serially correlated errors. The FGLS estimator of the integrated SUR model has a nonstandard
limit distribution that is skewed and shifted away from the true parameter due to the asymptotic endogeneity
of the regressors and the serial correlation of the errors, even though the estimate is consistent ( see also Park
and Phillips, 1988 and Moon, 1999). This renders inference in these systems difficult.

Two solutions have so far been put forth. First, Park and Ogaki (1991) suggested using the canonical
cointegrating regression (CCR) estimator first presented in Park (1992). On the other hand, Moon (1999)
suggested using fully-modified (FM) estimators (e.g., see Phillips and Hansen, 1990, Phillips, 1991, and Phillips,
1995) on these systems. These two sets of estimators have limiting mixed normal distributions, rendering
inference straightforward and allowing efficiency comparisons between estimators.

This paper suggests an alternative method for obtaining mixed normal limiting distributions based on
results of Saikkonen (1991) and Stock and Watson (1993). The approach (which we call dynamic FGLS)
consists of adding leads and lags of the first differences of the regressors and using feasible generalized least
squares on this augmented dynamic regression model with the long-run covariance matrix. We prove that with
restrictions on the rate at which we add leads and lags as the sample size increases, we obtain estimators with
limiting mixed normal distributions which allow for standard inference procedures to be used. Moreover, our
estimator is more efficient than equation-by-equation or system-wide ordinary least squares.

We apply these new estimators to the testing of purchasing power parity. There are various forms of the
PPP doctrine, but they all share the idea that nominal exchange rates should reflect the behavior of relative
price levels. There has been an enormous amount of recent literature devoted to testing this hypothesis. We
use our more efficient estimators to develop tests that we believe are more appropriate than those already in
the literature.

The outline for the rest of the paper is as follows. The next section introduces our estimators and derives

their limiting asymptotic distribution. Section 3 presents results from a simulation experiment comparing



estimators of the integrated SUR model. Section 4 presents our empirical methodology and results for testing

PPP among industrialized countries over the recent float, while section 5 concludes.

2 Dynamic GLS Estimation of the Integrated Seemingly Unrelated Re-

gression Model

In this section we study a SUR model with integrated regressors. Suppose that there are M individual linear

cointegration regression equations,

/
Ymgi = Bm,0+6m71$m,t+um,t (1)
Tmit = Tmit—1+ Ungt,
where w,,; and vy, ; are scalar and L-vector valued stationary processes, respectively, for m = 1,---, M,

and ¢t = 1,...,T. Assume that z,0 = Op(1) as T — oo for all m = 1,..., M. Let v = (Yi,t,---,Ynmzt) s

l4
~ - ~, ~ -~ / / / / ! / / !
Ty = diag(Z14,- .-, Targ)s Tmy = (1, :cm7t) , Ty = <a:17t, ey :cM7t) sup = (Ui, ..., ung), and vy = (UM, .. ,U]w’t) .

Then, using vector notation, we rewrite (1) as

ye = B+, (2)

Ty = X1+,

where 8 = (B}, ..., 8y) and B, = (Bm.o: Bm1) -

Define wy = ( uy v} ) . We assume that the partial sum process of w; converges in distribution to a

Brownian Motion,
1 [Tr]

— wy = B(r)=BM (), 3

TE Y B )= BV () 3

s , Quu Quo / n/' /

where Q =37 E(wowy,) = o o , B(r) = (Bu (r)", By (1) ) , By (r) = (Biu(r), ..., Buu (1)),

U VU

By (r) = (Biw (1), ., Barw (r)')/, and the partitions of © and B (r) conform to the size of u; and v;. The
functional central limit theorem assumed in (3) is satisfied under mild regularity conditions on w; (e.g., see
Phillips and Solo, 1992). In this paper we assume that the long-run covariance matrix €2 of wy is positive
definite, which excludes the possibility that there exists a cointegrating relation among the elements of x;.
The main purpose of this section is to develop an efficient estimation method for the cointegration parameter

[ in the SUR cointegration model (1) and establish its asymptotic properties. When there is (long-run)



correlation between u; and v; (as in a simultaneous equation model) and/or serial correlation, it is well known
that the limiting distribution of the OLS estimator of model (1)! is miscentered and skewed, and this causes
difficulties in statistical inference. To overcome the problem, we modify the regression model and make the
transformed error asymptotically uncorrelated with the regressors.

To do so, we decompose the stacked vector u; into two components, the projection onto the sigma field

generated by {vi},2 , D72 v, and a residual, namely

[0 ]
u= Y wve & (4)
j=—00
and in this case, &, is uncorrelated with {vt}fi _ oo - Denote the long-run covariance of §; by 2y,.,. Under mild

2

regularity conditions <, we know that

Quu.v bl Quu - quQ;}Qvu- (5)

Now, in view of the decomposition (4), we can write the model (2) as

ye=FHB+ Y mv; & (6)

j=—o00
In equation (6) we have added an infinite number of regressors {v;}, __, which makes estimating it impossible
with a finite number of observations. We propose a feasible version of (6) obtained by truncating the infinite
sum and replacing it by Zszf x TjAxi_j, where K is assumed to tend to infinity as 7' — oo at an appropriate

rate to be specified below. Hence the estimable version of model (6) is

K
vy = TP+ Y miAm+& (7)
=K
K
= 7B+ Z (Aa:;ﬁ- ® IM) vec(m;) + &
=K
= zb+ &,

where

g: = €t+et7 € = Z TjVt—j,

lil>K

'In this case, system OLS estimation is identical to equation-by-equation OLS estimation.
*See, for example, Brillinger (1975) and Saikkonen (1991).
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Azi_ i @ Inr
2t = X ) b= (5/71_[/[()/7
Axir g @ Ing
Mg = (vec(n_k),...,vec(nk)').

Note that the regression model (7) is simply an augmented version of the original SUR model (1) obtained by
adding leads and lags of Ax;.
We may consider estimating the regression model (7) in two ways, either by OLS or by GLS using the

long-run correlation in the error £, as is appropriate when the error term has serial correlation. Let

Y, = Wigeyne) s Y = Yierr, Y k),
X = (~K+17"'75U’T7K)/7
Arie = (Azp_g, ---,ALUQJFK)/ ® In, Ak = (A K41, -0 AxT-K)

7 = (X AK) .
The system dynamic OLS (hereafter SDOLS) and the dynamic (feasible) GLS (hereafter DGLS) estimators
are defined, respectively, as:

bspors = (22)"

. . -1 \! . -1
bDGLS - <Z/ (IT—QK ® Quuv) Z) <Z, (IT—QK ® Quuv) Y) (9)

7'y, (8)

or in summation notation,

) T K -1 7 K
bspors = ( Z Zt21/5> ( Zt?Jt) (10)
t 1

) T-K -1 71K
bpeLs = ( > Zﬁ;},%i) ( > ZtQ'l:ul.vyt> (11)
t

t=K+1

T_K LA e
_ b+( 5 n) 5 zm;;.vs:),

t=K+1



where Qm“, is a consistent estimate of €,,.,. Note that the DGLS estimator BDGLS is a GLS estimator using
the long-run correlation information in the system (7).

An alternative estimator is the dynamic OLS estimator for the cointegrating vector f3,,, (hereafter IDOLS)
Qm,n Qm,n
; th 5o Ji+4 : ’ / m.n Ul uY
in the m" individual regression model of (1). Now define wy, ; = (um,t, Um7t) and Q™" = =
Qo Qoo

S0 o B (wmot) ) - et

o0
Qm,t = Um,t — Z Tm,jVm,t—j5, (12)

j=—o0

be the linear projection residual of the m!” individual equation regression error U, on the closed linear space

of {um,e}io ., for m =1,..., M. Denote the long-run variance of 6, ; by Q7 . Under mild regularity conditions,
Qo = QU™ — Q™ Q™) 7 Q™ (13)
Now we define the following m!”* individual dynamic regression
K
Ymt = Frp B+ Y TmjATmt—j + Oy, (14)
=K
where
;kn,t = Qm,t + €m,t,
Emit = Z Tm,jVm,t—j-
71> K

~ ~ ~ ~ !/
We denote (3, the OLS regression estimator for (3, of (14) and B;porg = (ﬁll, 753%) .
Let BDGLS and ﬁDGLS be sub-vectors of BDGLS whose sizes are conformable to those of 3 and II. In a

similar fashion, define Bspors, Uspors, Brpors, and Illrpors. Define

Dy = diag (x/N,NIL),
FN = diag(DN,...,DN),

Gy = diag <FN7\/NI(2K+1)LA12)7

where N = T'—2K. We collect the asymptotic distributions of the above estimators in the following proposition.



Proposition Suppose that the functional limit theorem (3) holds and &; in (4) and 6, in (12) have long-
run covariance matrices ., in (5) and Q7 . in (13) respectively. Further suppose that KTS — 0 and

uu.v
\/TZ].>|K‘ |7l =0 (1). Then, as T' — oo,

@) Fx (oars - 8) = M8 (0. (3 B, )0 By ar) ).

) P (Bsposs = ) = M (0, (3 Bu(r) B 1) ™ (I3 B ()2 1)) () B ) By ) ).

~ ~ ~ —1 ~ ~ - ~ -1
(©) Fx (Bioows = B) = MN (o, (Jo Bo ) By ) ar) ™ (o Bo () QB (7)) (fo B () By (r) ) ) ,
where Quu,v is the asymptotic long-run covariance of (614, ..., 9]\/[,t),-

Moreover, it is easy to show that the limiting variance of 3 pars 1s smaller than that of I spors Wwith

probability one because

</ B, QuuvB’()dr>_1
< </0 By () B. (r) dr >1 </01 By (1) Quw By @«)) </01 By () B (r) dr)l (15)

with probability one. Therefore, 3 pars is asymptotically more efficient than 3 SOLS-

Moreover, since Q. < Quu,v, we can conclude that Fy (B SDOLS — 6) is asymptotically more efficient
than Fy <BIDOLS — 5) Therefore, among the three estimators, we can conclude that the DGLS estimator
3 pars is the most efficient and the individual dynamic OLS estimator 3 pors is the least efficient. This
result is also obtained by Park and Ogaki (1991) and Moon (1999) with the CCR method and the FM method,
respectively.

In a linear cointegration regression model with no restriction on the cointegrating vectors, it is well known
that there is no efficiency gain in GLS estimation over OLS estimation ( e.g., Phillips and Park, 1988 and
Stock and Watson, 1993). This asymptotic equivalence result is similar in spirit to the classical Grenander
and Rosenblatt theorem (1957) for which the polynomial time trend regression is considered with a stationary
€rror.

However, as we verify through (15), in the dynamic augmented model (7) the GLS estimator is asymptoti-

cally more efficient than the OLS estimator. As discussed in Park and Ogaki (1991), the asymptotic efficiency



gain of GLS in the SUR model comes from overidentification parameter restrictions. To see this, write the

SUR model (2) in a multivariate regression form,
Y = BXy + g, (16)

where B = diag (31, ..., B,,) and X; = (i’u, ...,f'M’t)/. In model (16), overidentifying parameter restrictions
are imposed by restricting the off-block diagonal elements of B to be zero, while in the models studied in
Phillips and Park (1988) and Stock and Watson (1993), the regression coefficients are exactly identified.

The mixed normality property of the limiting distributions of /3 SDOLS> 3 parss and 3 1porLs €nables us
to use conventional chi-square tests for the null hypothesis of parameter restrictions. Suppose that we are

interested in testing a null hypothesis on the parameters,

Hy : 90(6) =, (17)

where ¢ is a (¢ x 1) vector-valued, continuously differentiable function and the first derivative of ¢ at the true

parameter (3 ,I1, has full rank q. The Wald test statistic W using B pars is then defined as

Wr = Fr(e(Bpars) —r)
1 <& B -
x| ©(Bpars) (ﬁ ZFT_lftQuivﬁFT_l> ®(Bpars)
=1
XFT(SO(BDGLS) —-),

and it is easy to verify that under the assumptions stated above, as T' — oo, W = Xg, a chi-square distribution

with g degrees of freedom.

3 Simulation comparison

In this section, we want to compare the relative merit of the various estimators of the integrated SUR model.

The data generating process that will be used for this purpose is:

yir = Bio+ BT + v

Yor = oo+ BorTar + uat
where xy, ¢ are correlated random walks:

ACL']'J: = Uj,t7 ] = 1,2



and wuy is correlated with v;¢:

0 1 p w O
Ut 0 0 w
~i.i.d.N ,
Vg 0 w 0 1
0 0 w 1

The parameter p controls the degree of correlation between the two equations and will therefore affect
the efficiency gains of GLS relative to OLS. On the other hand, w controls the degree of correlation between
regressors and disturbances and will therefore affect the behavior of the static OLS and GLS estimators of (2).
Finally, ¢ controls the degree of correlation between the regressors of the two equations and will control the
relative efficiency of system versus individual equation OLS. We set the covariances (p,w, @) to extreme values,
that is (0,0,0), (0,0.5,0.5), (—0.9,0,0), (0.9,0,0), (0,—0.9,0), (0,0.9,0),(0,0,0.9), and (0,0,—0.9) .

Without loss of generality, we set (3, ; = 1 for m,j = 1,2 and concentrate on the estimation of the
coefficients from the first equation. We want to comparey/N (Bl,o,e — 1) and N (Bl,l,e — 1) for e = IDOLS,
SDOLS, DGLS, FM — OLS 3, and FM — GLS. The sample sizes chosen are T = 100 and T = 500, and the
number of replications is 1000. The number of leads and lags in the dynamic estimators (K) is set at 5 for
T'= 100 and 8 for T"= 500. We also report the rejection frequency of the hypotheses 3,y =1 and 3, ; = 1 for
each estimator based on individual t-tests using the asymptotic critical values.

Since the efficiency gains due to GLS-type estimators come from a non-diagonal long-run covariance matrix,
it is important to see how each parameter affects it. For this DGP, the long-run covariance matrix Q. is
1-— %; p+ f’%ig

Qu1m) -

¢w2 w2
Prig l-1ip

This expression highlights the role played by the three parameters of the DGP.
The results are presented in table 1 for T" = 100 and table 2 for T" = 500. The first line for each set of

parameters gives the results for 3; ; and the second line gives the results for 3 ;.

The main features of the results are:

3There is an error in By, sorg defined in Moon (1999). The component 7, should be



e All estimators are nearly unbiased even with the smaller sample size.

e The convergence of the estimates of the slope coefficient (Bl,l) is much faster than that of the constant,

as expected.

e There are large efficiency gains in using GLS in cases where |p| is high. These are cases where the

cross-equation correlation is high.

e All estimators suffer from size distortions with 7" = 100. The size of the tests is much improved with

T = 500. However, FM-OLS and FM-GLS have severe distortions for high |p] .

e There are noticeable efficiency gains of using system methods relative to individual equation methods

when the regressors are endogenous (w # 0) and correlated (¢ # 0) .

e The magnitude of w or ¢ on their own is negligeable. However, they would bias static estimators.

Overall, our estimator performs well in all cases relative to its competitors and has substantial advantages

in some cases. This is especially true with the bigger sample size (7" = 500) .

4 Empirical Application: Testing for PPP

The purchasing power parity (PPP) doctrine states that nominal exchange rates should reflect relative price
behavior. Over the years, several versions of it have been proposed. The strongest version is absolute PPP
which states that the nominal bilateral exchange rate should be equal to the relative price level between the
two countries, implying that all goods and services should have the same price in both countries once expressed
in a common currency. Due to the different national price indices and the presence of non-traded goods, a more
common version is relative PPP in which changes in the nominal exchange rate reflect changes in relative price
levels (or the inflation differential). Pedroni (1996) makes a further distinction between weak (relative) PPP
and strong (relative) PPP. In the strong form, the coefficient of a regression of the nominal exchange rate on
the relative price level is 1, implying that the real exchange rate is stationary. Under weak relative PPP, the

coefficient is different from 1, but there exists some value for which the residuals are stationary.



Table 1. Simulation results, T" = 100

Mean Std. error Size
IDOLS SDOLS DGLS FM- FM- IDOLS SDOLS DGLS FM- FM- IDOLS SDOLS DGLS FM- FM-
OLS GLS OLS GLS OLS GLS

(0,0,0) 1.013 1.012 1.013 1.007 1.009 | 0.264 0.291 0.295 0.189 0.189| 12.2 16.1 171 94 9.8
0.998 0.998 0.998 1.000 0.999 | 0.050 0.053 0.054 0.036 0.036| 13.7 16.5 19.3 11.1 13.1

(0,0.5,0.5)] 0.999 0.997 0.996 1.000 1.000 [ 0.219 0.220 0.224 0.163 0.164 | 12.8 15.5 174 7.6 7.7
0.997 0.998 0.998 1.008 1.009 | 0.041 0.042 0.042 0.032 0.033| 12.6 155 189 89 10.6

(-0.9,0,0) [ 0.989 0.988 0.996 0.995 0.996 | 0.262 0.273 0.204 0.191 0.148| 13.2 15.3 16.2 50.8 45.5
0.999 1.000 1.000 0.999 0.999 | 0.047 0.051 0.031 0.035 0.023| 12.7 14.6 16.9 50.5 33.1

(0.9,0,0) | 0.983 0.985 0.993 0.997 1.000 | 0.245 0.267 0.196 0.187 0.149 | 104 16.1 16.8 2.5 1.5
1.002 1.002 1.001 1.002 1.002| 0.047 0.051 0.031 0.033 0.022 | 11.3 14.7 18.6 1.1 0.6

(0,-0.9,0) | 1.000 1.001 0.999 0.999 0.998 | 0.107 0.117 0.120 0.119 0.124 | 12.3 15.8 173 15.2 17.0
1.000 0.999 0.999 0.983 0.981 | 0.020 0.022 0.023 0.025 0.025 | 12.4 15.0 17.5 25.3 28.7

(0,0.9,0) | 0.998 0.996 0.996 1.000 0.999 | 0.112 0.120 0.123 0.133 0.137| 13.7 154 17.0 15.7 18.0
1.001 1.001 1.001 1.018 1.020]| 0.022 0.023 0.024 0.027 0.028 [ 12.4 15.2 19.1 23.5 27.6

(0,0,-0.9) | 1.003 1.007 1.006 1.008 1.007 | 0.240 0.260 0.263 0.178 0.180| 10.8 14.2 15.7 8.8 8.8
0.999 0.999 0.999 1.000 1.000| 0.049 0.054 0.054 0.035 0.035| 12.9 169 17.1 9.6 9.9

(0,0,0.9) | 1.005 1.005 1.007 1.003 1.003 | 0.229 0.258 0.263 0.179 0.180| 11.2 14.1 15.1 11.0 11.1
1.000 1.000 1.000 1.001 1.001 | 0.048 0.053 0.053 0.034 0.034 | 11.7 16.2 16.5 10.1 10.3

Tests of absolute PPP are scarce in the literature because of measurement problems. One exception is
the paper by Crownover, Pippenger, and Steigerwald (1996) which uses data on price levels used to adjust the
salaries of German diplomats over the world. However, there is by now an enormous literature on testing relative
PPP. The most common form of these tests consist of testing whether the real exchange rate is stationary as
it should be under strong relative PPP. Sample articles include Frankel and Rose (1996), MacDonald (1996),
Oh (1996), Wu (1996), Koedjik Schotman, and Dijk (1998), Papell and Theodoridis (1998), Sarno and Taylor
(1998), O’Connell (1998), Higgins and Zakrajsek (1999), and Flores, Jorion, Preumont, and Szafarz (1999).
The overall consensus from these studies seem to be that real exchange rates are stationary when using system

tests and that PPP holds in the long run, the only exception being the study by O’Connell.
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Table 2. Simulation results, T" = 500

Mean Std. error (>< 10_1) Size
IDOLS SDOLS DGLS FM- FM- IDOLS SDOLS DGLS FM- FM- IDOLS SDOLS DGLS FM- FM-
OLS GLS OLS GLS OLS GLS

(0,0,0) 1.004 1.004 1.005 1003 1.003 | 0.849 0.865 0.867 0.782 0.784 (60 7.0 73 6.8 7.2
1.000 1.000 1.000 1.000 1.000| 0.074 0.075 0.075 0.067 0.068( 7.5 &8 &6 63 7.0

(0,0.5,0.5)] 0.996 0.996 0.996 0.998 0.998 | 0.758 0.722 0.721 0.661 0.662 | 6.8 6.6 6.4 3.7 3.8
1.000 1.000 1.000 1.001 1.001 | 0.068 0.065 0.063 0.059 0.058 (6.7 74 83 48 4.6

(-0.9,0,0) [ 0.997 0.997 0.998 0.996 0.998 | 0.869 0.891 0.629 0.807 0.588 | 6.6 7.3 6.7 53.7 44.2
1.000 1.000 1.000 1.000 1.000| 0.073 0.076 0.039 0.067 0.035( 57 7.0 70 51.9 248

(0.9,0,0) | 1.000 1.000 1.000 1.001 1.000 | 0.845 0.854 0.597 0.796 0.561| 7.1 7.0 68 1.7 0.6
1.000 1.000 1.000 1.000 1.000| 0.074 0.075 0.038 0.071 0.037( 72 76 65 15 0.0

(0,-0.9,0) [ 0.999 0.998 0.998 0.998 0.998 | 0.372 0.382 0.383 0.357 0.360| 6.2 6.9 7.1 6.1 6.2
1.000 1.000 1.000 0.999 0.999 | 0.032 0.032 0.033 0.035 0.035( 75 &3 9.0 99 110

(0,0.9,0) | 1.000 1.000 1.000 1.000 0.999 | 0.375 0.385 0.386 0.376 0.380| 7.1 80 78 79 8.1
1.000 1.000 1.000 1.001 1.001] 0.032 0.033 0.033 0.033 0.034(6.7 73 75 &7 10.3

(0,0,-0.9) | 1.002 1.002 1.002 1.003 1.003 | 0.863 0.881 0.884 0.797 0.799| 6.5 7.2 73 59 6.0
1.000 1.000 1.000 1.000 1.000 | 0.069 0.071 0.072 0.064 0.065| 6.3 6.1 64 59 5.9

(0,0,0.9) | 1.003 1.003 1.003 1.002 1.002 | 0.929 0.938 0.944 0.873 0.878| 81 85 86 7.2 7.3
1.000 1.000 1.000 1.000 1.000 [ 0.080 0.080 0.081 0.073 0.073]93 91 9.0 91 9.2

We use the estimator proposed above in testing for strong relative PPP. Because of strong links across
markets and the use of a numeraire country in defining real exchange rates, real exchange rates should have
high cross-correlation, a fact neglected in many of the above studies and taken into account by our estimator.
The papers by O’Connell, Hlggins and Zakrajsek, and Flores, Jorion, Preumont, and Szafarz do control for
this heterogeneity but in the short-run only. Even in the long run, we should expect (and we will show) that
real exchange rates are cross-correlated. Taking advantage of these long-run correlations in estimation leads to
more efficient estimates and more powerful inference.

The data we employ covers the entire recent float for the G-7 countries (1974-1998, 300 observations per

country). The data was obtained from IFS and consists of monthly averages of the bilateral exchange rates
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relative to the US dollar and national consumer price indices.

Table 3 presents the short-run correlation matrix of changes in the real exchange rates of the 6 countries
involved and is similar to table 1 in Flores et al. (1999). Three explanations can account for the large
correlation, in particular among European countries. The first one is the presence of various nominal exchange
rate co-ordination mechanisms among European countries over the period. The second source of correlation,
as pointed out by O’Connell (1998) , is the use of a numeraire country (in this case the United States). Finally,
the international transmission of shocks among these countries leads to correlation among their real exchange

rates.

Table 3. Short-run correlation matrix of real exchange rate changes

Canada 1.000
Japan 0.059 1.000
Germany 0.127 0.593 1.000
France 0.121 0.576 0.919 1.000
Italy 0.145 0.457 0.756 0.800 1.000
United Kingdom 0.142 0.445 0.648 0.657 0.650 1.000

Table 4 is identical to the previous table, but it compares the long-run correlation of changes in the real
exchange rates among the countries involved. There are large off-diagonal entries, especially among European
countries, but also between Japan and Europe. Canada is the only country with small correlation with the
other countries in the sample. These long-run correlations were neglected by all previous authors and will be

used to gain efficiency in testing for PPP.

Table 4. Long-run correlation matrix of real exchange rate changes

Canada  1.000
Japan —0.013 1.000
Germany —0.028 0.561 1.000
France —0.115 0.502 0.926 1.000
Italy  0.014 0.329 0.784 0.836 1.000
United Kingdom —0.061 0.291 0.590 0.693 0.726 1.000
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The test that we will use is a test of strong relative PPP. Strong relative PPP implies that 3 should be

unity in the regression:

Ins; =a+ [ln(p/pi) + e (18)

where s; is the nominal bilateral exchange rate defined as the number of local currency units per US dollar, p;
is the local consumer price index, and pf is the US CPI. Absolute PPP would further restrict o to be zero, but
we do not impose this or test it as it is obviously violated in our sample.

Our test differs from most other empirical work in that the null hypothesis 3 = 1 treats PPP as the null
hypothesis. As previously stated, most studies test for PPP by carrying out unit root tests on real exchange
rates. The null hypothesis in this case (the unit root) is no PPP. We believe that treating PPP as the maintained
hypothesis to be discarded is more natural.

A further advantage of our framework is that, under the null hypothesis of PPP, the linear specification (18)
is robust to the choice of a numeraire country. That is, if we choose say Germany as the numeraire country,
our null hypothesis of PPP would be a hypothesis on the coefficients of a linear regression of nominal exchange
rates on relative price levels. Tests based on autoregressions do not have this property: the specification is
sensitive to the choice of the numeraire country as shown by Flores et al. (1999). That is, if the real exchange
rate using the U.S. as numeraire is an AR(1) process, the real exchange rate using Germany as numeraire will
not be an AR(1).

Moreover, in the case where equation (18) is not a cointegration regression, that is if &; is non-stationary
for any value of « and 3, our test statistic diverges to infinity (equation (18) becomes a spurious regression,
see theorem 1(d) in Phillips (1986)). In this case, our test will correctly conclude that PPP is not supported
by the data.

Table 5 presents the results of estimating equation (18) using the same 5 estimators as in the Monte Carlo
experiment above. To assess sensitivity to the choice of K, we report results for three values of K close to Ts.
It turns out that the results are quite robust to this choice.

First of all, as just mentioned, it is reassuring that no conclusion depends on the choice of K, the number of
leads and lags included in the dynamic regressions. With our dynamic GLS, we can reject the null hypothesis
for all countries except for Canada and Italy. The non-rejection for these two countries is robust across methods
as well. We can only reject Italy with FM-GLS.

There are noticeable differences when passing to system methods (either SDOLS or DGLS). The two system
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methods allow us to reject the null hypothesis for 4 of the six countries while individual OLS allows us to reject
only for France and Japan. The efficiency gains come for highly correlated European countries (Germany and
the United Kingdom). Moreover, dynamic GLS provides more precise estimates, suggestive of further efficiency
gains though no conclusion is reversed by the choice between OLS or GLS.

As emphasized by other authors, it is important to look at system methods in testing for PPP. This
provides efficiency gains and increased power sufficient to reject the hypothesis that purchasing power parity

is a reasonable description of long-run exchange rate behavior.

Table 5. Estimates of 3

(t-statistics for Hp : f =1 in parentheses, * indicates significance at 5% level)

K = Canada Japan Germany France Italy U.K.
5 1.422 1.963 1.031 2.161 % 1.108 0.696
(1.317)  (6.492) (0.192) (6.800) (1.370) (—1.755)
IDOLS 6 1.430 1.983 x* 1.056 2.178 * 1.128 0.691
(1.234)  (6.148) (0.292) (6.523) (1.470) (—1.544)
7 1.437 2.014 * 1.068 2.187 1.145 0.678
(1.164)  (5.992) (0.329) (8.289) (1.539) (=1.417)
) 1.284 1.585 * 1.644 2.455 * 0.968 0.627 =
(0.617)  (3.136) (3.152) (6.579) (—0.365)  (—3.142)
SDOLS 6 1.136 1.399 «  1.568 x  2.656 * 0.980 0.544 =«
(0.306)  (2.186) (2.740) (7.000) (=0.230)  (—4.005)
7 1.097 1.283 1.446 x  2.780 * 0.998 0.472
(0.208) (1.454) (2.109) (6.672) (—0.027)  (—4.469)
5 1.319 1.633 «  1.434 % 2.060 * 0.900 0.680 =
(1.066)  (4.648) (3.115) (7.547) (—=1.419)  (—3.155)
DGLS 6 1.187 1.493 « 1449 %«  2.273 x 0.909 0.656
(0.765)  (3.545) (3.302) (8.817) (—1.232)  (—3.527)
7 1.147 1.373 «  1.394 % 2.457 % 0.951 0.617 =
(0.632)  (2.676) (3.072) (9.119) (—0.666)  (—4.283)
FM —OLS 1.052 1.829 * 0.784 x  1.969 * 0.953 0.777
(0.132)  (7.996) (—1.968) (3.023) (—0.784)  (—3.382)
FM —GLS 1.252 1.930 = 0.839 1.539 0.863 =  0.705 =
(0.656)  (10.424) (—1.480) (1.785)  (—2.262) (—4.610)

5 Conclusion

This paper has proposed new estimators of the SUR model with integrated regressors based on an augmented

regression model. We have derived the asymptotic distributions of our estimators and indicated that a feasible
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generalized least squares estimator of the augmented model using the long-run covariance matrix is the most
efficient among them.

Monte Carlo results suggest that our dynamic GLS estimator compares favorably with other estimators and
improves noticeably upon them in some situations. Moreover, inference with this estimator has size close to its
nominal level. This is not the case of fully-modified estimators which suffer from more severe size distortions.

An application of the methods to testing of purchasing power parity among G-7 countries demonstrates the
importance of analyzing this issue in a system framework. With our dynamic system methods, we are able to
reject PPP for 4 of the 6 countries in our analysis. This casts doubts on the validity of PPP as a reasonable
description of long-run exchange rate behavior. This conclusion is in line with that of O’Connell (1998) but
contrary to much of the recent literature. Further work is necessary in assessing the strength and weaknesses

of the various methods of testing for PPP.

6 Appendix

Proof of Proposition

The proof uses standard arguments and will be mostly omitted. It suffices to notice that we can write

-1

. Fn <BDGLS - 5) A A By
Gn (bDGLS - b) = . = ,
VN (HDGLS - H) Aly Az By
where
All = Z F ItQuulvh',
t=K+1
Ap = Fyla A I Fyla A I
12 \/_Zt =K+1 Tt uuv( ajt K® ]U) \/_Zt K+1 Tt uuv( wt+K® ]V[)
% z:_lg(—i-l (Axt KAIt K ® Quu ’U) T % 31:_15—&—1 (Axt KA‘TH-K ® Quu v)
Axp = )
% ;F:_Ig_l (Awt-&-KAxt KO Quu v) % z;§+1 (Awt+KAﬂ3;+K ® Q’l:ul.v)
and

T—-K

_ -1 ~ O—1 ¢x

By = FN E thuu.vgt
t=K+1
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\/— PO K+1 <A5L’t*K ® Qiﬁ.vﬁ)
B =

\/— Zt K+1 <A5Ct+K ® Qqﬂ}mf?)

Then, with KTB — 0 and \/sz>|K| |75l = o (1), we can use similar arguments to those in Saikkonen(1991) to

show that as T" — oo
Fn <BDGLS - 5)

= </ B, (r) QL B (r > /B ) QA By (1)
MN( </B QWB;()d> )

where Byy., (1) = By (1) — Q2,1 B, (7). The derivation of the other two results is similar. B
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