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RESUME

Des recherches récentes démontrent qu'une corrélation faible entre les instruments
et les variables explicatives peut mener a de sérieux problémes d'inférence dans les
régressions avec variables instrumentales. Nous étendons l'analyse locale a zéro des
modéles avec instruments faibles aux modéles avec des instruments et régresseurs
estimés et avec de la dépendance dans les moments supérieurs. Ainsi, cet environnement
devient applicable aux modeles linéaires avec des variables anticipatoires qui sont
estimées de fagon non paramétrique. Deux exemples de tels modeles sont la relation
entre le risque et les rendements en finance et l'impact de lincertitude de linflation sur
l'activité économique réelle. Nos résultats démontrent que l'inférence basée sur les tests
du multiple de Lagrange (LM) est plus robuste a la présence d'instruments faibles que
l'inférence basée sur les tests de Wald. En utilisant des intervalles de confiance construits
selon les tests de LM, nous concluons qu'il n'y a pas de prime de risque significative dans
les rendements de lindice S&P 500, les rendements excédentaires entre les Bons du
Trésor de 6 mois et de 3 mois et les rendements du taux de change spot entre le yen
japonais et le dollar américain.

Mots clés : variables instrumentales, instruments faibles, analyse locale a zéro, tests du
multiple de Lagrange, tests de Wald, prime de risque, anticipations, modeles
semi-paramétrigues, noyaux, réseaux de neurones

ABSTRACT

Recent work shows that a low correlation between the instruments and the included
variables leads to serious inference problems. We extend the local-to-zero analysis of
models with weak instruments to models with estimated instruments and regressors and
with higher-order dependence between instruments and disturbances. This makes this
framework applicable to linear models with expectation variables that are estimated non-
parametrically. Two examples of such models are the risk-return trade-off in finance and
the impact of inflation uncertainty on real economic activity. Results show that inference
based on Lagrange Multiplier (LM) tests is more robust to weak instruments than Wald-
based inference. Using LM confidence intervals leads us to conclude that no statistically
significant risk premium is present in returns on the S&P 500 index, excess holding yields
between 6-month and 3-month Treasury bills, or in yen-dollar spot returns.

Key words : instrumental variables, weak instruments, local-to-zero analysis, LM tests,
Wald tests, risk premium, expectations, semi-parametric models, kernels,
neural networks



1. Introduction

Recently, the problem of weak correlation between instruments and regressors in instrumental vari-
able regression has become a focal point of much research. Staiger and Stock (1997) developed an
asymptotic theory for this type of problem using a local-to-zero framework. They show that standard
asymptotics for IV estimators can be highly misleading when this correlation is low. Following the
methodology of Staiger and Stock, Zivot, Startz, and Nelson (forthcoming) and Wang and Zivot
(1998) show that usual testing procedures are unreliable in such situations. Earlier analyses of mod-
els under partial identification conditions was given in Phillips (1989) and Choi and Phillips (1992),
and Dufour(1997).

This paper extends the weak instrument literature using the Staiger and Stock framework in two
ways: first, we will analyze a restricted class of semi-parametric models in which both regressors
and instruments are estimated, and second we will allow for higher-order dependence between the
instruments and the disturbances. These extensions are meant to make the analysis applicable to the
many theoretical models in finance and macroeconomics that suggest a linear relationship between

a random variable and an expectation term of the general form,
y=pFr+67Z +e (1.1)

where 1, is a scalar, x; is a vector of exogenous and predetermined variables, and Z; is a vector
of unobservable expectation variables. Of particular interest is the case where Z; is a conditional
variance term, and in this framework, interest centers on the parameter 6 as it measures the response
of y; to increased risk.

One example of this type of problem includes the risk-return trade-off in finance where agents
have to be compensated with higher expected returns for holding riskier assets. A model like (1.1)
will hold as an approximation in this case if 2 is the return on an aggregate portfolio. This trade-
off has been examined by several authors, including French, Schwert, and Stambaugh (1987) and
Glosten, Jagannathan, and Runkle (1993). In this case, Z; is the conditional variance of the asset,
and x; would generally include variables measuring the fundamental value of the asset. For example,

if the asset is an exchange rate, potential fundamental variables include the interest rate differentials,
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relative money stocks, relative outputs, and relative inflation rates. A second example of this model
is in analyzing the effect of inflation uncertainty on real economic activity. Here, 7; is the variance
of the inflation rate conditional on past information, and ¥, is some real aggregate variable such as
real GDP or industrial production.

The estimation of these models has proven difficult because a proxy has to be constructed for the
unobservable expectation term. A complete parametric approach would assume functional forms for
the expectation processes of agents which can then be estimated along with (1.1) by, for example,
maximum likelihood. A semi-parametric approach, which is of interest in this paper, leaves the
functional form of the expectation terms unspecified but uses the linear structure in (1.1) to estimate
the parameters of interest once estimates of the expectation terms are obtained.

When 7, is a variance term, Fngle, Lilien, and Robins (1987) have introduced the parametric
AutoRegressive Conditional Heteroskedasticity-in-Mean (ARCH-M) model which postulates that
Zy = o2, the variance of the returns, follows an ARCH(p) model. A popular generalization is the

Generalized ARCH-M (GARCH-M) model with o2 of the form:

ol =aptone;  +...Fopel V0t V0, (1.2)

with (1.1) and (1.2) estimated jointly by maximum likelihood. Two problems surface when using
such models. First, maximization of the likelihood function can be very difficult unless p and ¢ are
kept small. Second, estimates in the mean equation will be inconsistent if the variance equation is
misspecified because the information matrix is not block diagonal. Given the lack of restrictions on
the behavior of the conditional variance provided by economic theory, this seems quite problematic.

An alternative approach that is robust to specification was suggested by Pagan and Ullah (1988)
and Pagan and Hong (1991). Their suggestion is to first replace Z; by its realized values, say Y7,
estimating this quantity non-parametrically, and using a non-parametric estimate of Z; as an instru-
ment. This approach is itself problematic since it does not solve the necessity to keep the number
of conditioning variables low. Moreover, a common problem when using such a semi-parametric ap-
proach is that the estimated conditional variance is poorly correlated with }A/t, the estimated realized
values. This paper will focus on addressing this second problem. The first problem is addressed

by using non-parametric estimators that are less susceptible to the so-called curse of dimensionality,
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such as neural networks and a semi-parametric estimator suggested by Engle and Ng (1993).

The rest of the paper is divided as follows: section 2 presents the instrumental variable procedure
described above in detail under the standard assumptions. In section 3, we present evidence on the
presence of weak instruments in the risk-return trade-off. Next, in section 4, we develop asymptotic
theory for the instrumental variable estimator described above under the weak instrument assump-
tion. In section 5, results from a limited simulation experiment are presented to outline the difficulties
involved in carrying out analysis in this type of models. Section 6 contains the results from applying
the techniques developed in previous sections to three financial data sets, returns on the Standard
and Poor’s 500 index, excess holding yields on Treasury bills and yen-dollar spot returns. Finally,

section 7 provides some concluding comments.

2. Semi-parametric models with conditional expectations

As discussed above, we consider linear models such as,
y=pFr+67Z +e (2.1)

where 1 1s a scalar, x; is a k1 X 1 vector of exogenous and predetermined variables, and Z; is a kg X 1
vector of unobservable expectation variables. One example of particular interest is where 7, is a
variance term of the form E [Y;|F], with Y; = (¢, — E [v,|F]) (¥, — F [,|F])" and where F; is the
information set available to agents in the economy at the beginning of period ¢. In this framework,
interest centers on the parameter ¢ as it measures the response of y; to increased risk. Such models
were first investigated along the lines followed here by Pagan and Ullah (1988).

The first step in tackling this problem is to replace the conditional expectation Z; by the realized
value Y;. In the following, we assume that Y; is not observable as is the case in the variance example
since Y; is itself a function of an expectation. Thus, an extra step is required in replacing Y; by an

estimate, }A/t The model to be estimated is then:

ye = Bai+8Yi+te +6 (Yt—ﬁ)w’(zt—n)

= [r+ 5/2 + uy



In general, an ordinary least squares regression of 3; on x; and }A/t will lead to inconsistent estimates of
[ and é due to the correlation between }A/t and (Z; — Y;). The solution suggested by Pagan (1984) and
by Pagan and Ullah (1988) is to use an instrumental variable estimator with Zt used as instruments
for }A/t In fact, to obtain consistent estimates, any variable in F; could be used as instrument. We
could consider finding an optimal instrument as F [2]‘7'}} which in general will be different from Z
because of the bias arising from the estimation of Y;. The steps used to construct the estimator are
illustrated in figure 1.

This problem will be semi-parametric when Y; and Z; are estimated non-parametrically. As in
many semi-parametric models, despite the lower rate of convergence of the non-parametric estimators,

the estimates of 3 and § will converge at the usual y/n rate under certain conditions.

/

Define 7, = (x4, 2,), Y = (x,Y3), Z = (71, . ,7n> Y = (71, . ,?n>/ with Z and Y similarly
defined but with Z and }A/t replacing Z; and Y;. Further let w, = e; + §' (7, — Y;) and 6 = (3, (5)/.

Counsider the IV estimator for this model:

A direct adaptation of the proof of Andrews (1994) gives the distribution of this estimator in the

usual assumptions for the instruments.

Lemma 2.1. (Andrews (1994)) Suppose the following:
L =25 (ﬁ—yt) 20
2. 7oL 7, Zy< ooVt
3. 0 is the interior of © C RF*!

4. \/%7 S 7 4N (0,5) where S =lim % S Eﬂtﬂs7s7;.

n— 00

5. M =lim % S Et7t?; is non-singular

n— 00

Tmm,vﬁ(é—e)ﬁfN(QAfﬂsuwﬂyy



The condition of most interest here is that we need ¥ to be ni-consistent for the asymptotic
distribution of the IV estimator of § not to be affected by replacing Y; and Z; by }A/t and Z. This
will generally not be the case when Y is estimated non-parametrically. However, it will hold in the
special case where Z; is a variance term. Let 794 = F [p,|F;] and T1; be an estimate of this quantity.

Then,

which will be o, (1) if Ty is consistent for 71, at rate ni. Conditions under which this holds can
be found in Andrews (1995). The distribution is still affected by replacing Z; by Y;, however, as
U =e +68 (72, —Y,).

This estimator has been applied in Pagan and Ullah (1988), Pagan and Hong (1991), Bottazzi and
Corradi (1991), and Sentana and Wadhwani (1991). Fxcept for Pagan and Ullah, all these papers
analyze the trade-off between financial returns and risk as postulated by mean-variance analysis.
Pagan and Ullah look at the forward premium in the foreign exchange market and the real effects of

inflation uncertainty.

3. Evidence of weak instruments

When using the above instrumental variable estimator, the quality of the instrument Z will determine
the quality of the asymptotic approximation described in lemma 2.1. There is a large amount of
work in the simultaneous equation literature devoted to the importance of strong instruments for the
finite-sample distribution to be well approximated by a normal distribution (one example is Nelson
and Startz (1990)). Essentially, the non-singularity condition (Assumption 5) in the previous lemma
is close to being violated.

Unfortunately, in our case of interest in which ¥; = €? and Z, = 02, it will generally be the case
that the correlation between the two estimates, €2 and 8? , 18 very low. Tables 1, 2, and 3 show the

value of R? for the regression of €2 on a constant and &; for three financial data sets using three
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non-parametric estimators with different conditioning variables and smoothing parameters. The

estimates are constructed in three ways. First, we use a multivariate kernel estimate defined as:

~ Ez‘#yﬁ( (%)

Tip = —
! Ei;«ét K (wZT>

as the estimate of the mean of yg for j = 1,2 with the kernel function K (w) taken to be the

multivariate standard normal and the bandwidth b = cn# where 5 is the sample standard deviation
of 4, n is the sample size, p is the number of variables in the conditioning set and c¢ is a constant
taking three different values, 0.5, 1, or 2. The conditioning variables, w, are taken to be lagged values
of the returns. We then define ¢? = (ye — ?R)Q and obtain an estimate of 02 as:

52 = Ty — (7).

A theoretical analysis of this non-parametric estimator of the conditional variance can be found
in Masry and Tjostheim (1995).

The second estimation method used is neural networks. A good introduction to these methods is
Kuan and White (1994). The advantage of this approach over the kernel is that it is not subject to
the curse of dimensionality. The version we will adopt has one hidden layer with logistic and identity

activation functions. the number of nodes will be allowed to equal 2, 4 and 8. The representation is:

Ly
T = ; 9km
for j =1,2.

The third estimator was first proposed by Fngle and Ng (1993). It provides more structure to
the conditional variance and will approximate the conditional variance function much better than
the kernel when the variance is persistent (see Perron [?] for simulation evidence). The estimator is
implemented by first estimating the mean by a kernel estimate as above and then fitting a function
for 02 as follows:

op =w+ fi (@) + ..+ fp (Erp) + POty
where the f;(-) are estimated as splines with knots using a Gaussian likelihood function. This
allows for a flexible effect of recent information on the conditional variance while allowing for per-

sistence. This framework includes most parametric models suggested in the literature such as the
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entire GARCH class. The number of segments in the spline functions acts as a smoothing parameter
and is allowed to take three values, 2, 4, and 8. The knots in the spline were selected using the order
statistics such that each bin has roughly the same number of observation subject to the constraint
of an equal number of bins in the positive and negative regions.

The first data set analyzed represents monthly excess returns on the Standard and Poor’s 500
between January 1965 and December 1997 measured at the end of each month. The data is taken
from CRSP, and the risk-free rate is the return on three-month Treasury bills. The second data set
is made of quarterly excess holding yields on 6-month versus 3-month Treasury bills between 1959:1
and 1998:1. A similar, but shorter, data set has already been analyzed by Engle, Lilien, and Robins
(1987) using their GARCH-M methodology and Pagan and Hong (1991) using the above instrumental
variable estimator. Finally, the last data series is made of monthly returns on the yen-dollar spot
rate obtained from International Financial Statistics between September 1978 and June 1998. The
three data sets are plotted in figures 2-4.

A quick look at the tables reveals that of these three series, only the excess holding yield generally
has R? higher than 0.1. The reason for this low correlation is that €? and o? have very different
volatility. Even if E [e?|F;] = o7, financial returns are extremely volatile and therefore, the difference
between e? and ¢? can be quite large. This is true even if we did not have to estimate these two

quantities; having to estimate them complicates matters further. We can illustrate by looking at the

GARCII(1,1) model:

Y = Bt o =p+ 6

of = wtae +fo] .
Andersen and Bollerslev (1997) show that the population R? in the regression

(ye — N)Q = Yo + ’718? + vy

where G- is the one-period ahead forecast obtained from the GARCH model is

042

R=——
1—3%—2ap



which will in general be very small even though F [(yt — /L)Q ].7'}} = o2. Figure 5 plots the value of
R? for different values of @ and 3. The value of R? is highly sensitive to the value of a. It is usual
in the literature to find point estimates of GARCII(1,1) models in the neighborhood of o = 0.05
and 8 = 0.9. The figure clearly shows that for such values, the correlation between e? and o? will
typically be quite low. The problem in this case is that 02 has very low variance relative to that of
y?; a low value of a means that o? is nearly constant locally.

We can expect that tables 1 and 2 do not even provide an accurate picture of the problem of
weak instruments. Using data sampled at higher frequency (e.g. daily) would result in even lower

correlation. The lower frequency allows some averaging which reduces the variance of €2.

4. Asymptotics with weak instruments

Staiger and Stock (1997) have recently shown, in the framework of a linear simultaneous equation
system, that having instruments that are weakly correlated with the explanatory variables makes the

usual asymptotic theory work poorly. Their assumed model is:

y = Yo+ X3+u

Y = ZII+XI'+V

where Y is the matrix of included endogenous variables that are to be replaced by instruments. Since
in our case, it will always be true that the model is exactly identified (that is, there will be as many
regressors as instruments since the instruments are estimates of the expected value of the regressors),
we will concentrate on the case where 7 is a n X ky matrix.. The weak instrument assumption is

imposed by assuming that:

== (4.1)

for some fixed ky X kg matrix G # 0 This assumption implies that in the limit, ¥ and Z are
uncorrelated.

It is possible to extend the analysis of weak instruments in Staiger and Stock (1997) to our case

of interest. Because the correlation between estimated regressors Zt and estimated instruments }A/t is
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very low in the data, it might be plausible to assume:
Y=ZII+XI'+V (4.2)

with
G
In=—
vn
for some GG # 0. Simple algebra leads to:
Y = 7+ (2-Z)0+ (YY) + XT+V
= ZI+ XT+¢

so that the correlation between }A/t and Z is also low. This differs from the Staiger and Stock
framework in that both variables will be estimated, and we will also allow for higher-order dependence
between the instruments and the disturbances.

There might be two reasons for a low correlation between the estimated instrument and explana-
tory variable. The first may be that the estimators used in constructing Zt and }A/t are poor and will
not approach their true value in small samples. On the other hand, the estimators may not be poor
in any sense, but Y; and its expected value may be weakly correlated. We saw one such example
above in the GARCII(1,1) model.

We can give a different motivation for equations (4.2) and (4.3) in the case where the instrument
is a variance term (7; = o7, Y; = €?) if we assume that the estimates of 0? and e? are obtained by
the kernel method. In this case, a simple application of the results in Masry and Tjostheim (1995)

leads to the joint distribution:

22 2
e, —e; — By

A
67 — 0?2 — By 0 0 O

Vnbw

where b is the bandwidth, p the number of conditioning variables, and B; and Bj are bias terms. We
can then assume that the covariance term is local to zero, say J//n, and use the formula for the

conditional distribution of Y; to obtain:
~9 2 -1 J ~2 2
e, —e;, — By =€), —n<0t — 0 —B%> Sz
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and since €? = 02 + vy with v, uncorrelated with the past, we can rewrite this as:

s a0 J L o J
e = 921—0'?—QQI—HU?_BQt‘I‘O_?—I-Ut—I-Blt‘l‘I/t

Vn
PR AR J
= 921ﬁ03+<1_921ﬁ

with B, = By, + By, so that the coeflicient on 83 is local to zero.

>U?+Bt+<t

Recall that the IV estimator of ¢ is:
~ ~ ~\ 1 o~
5 = (Z’Mmy) My
~ ~\ 1 ~
= 8+ (7 MV 7'M
where My =1 - X (X’XY1 X'. In order to derive the distribution of @, we need to make an extra

assumption on the reduced-form coefficients of X. We will also assume that they are local to zero:

r=— (4.4)

for some ki X ko matrix H # 0. This assumption is made because if I' were fixed, X and Y would be
collinear in the limit and the moment matrices would be singular.
The distribution of the estimators is given in the following theorem. All proofs are relegated to

the appendix.

Theorem 4.1. Assume the same conditions as in lemma 2.1, but with the fifth condition replaced

by (4.2) and (4.3) . Further, suppose the following hold:
(' X' X,n ' X 2,0 M Z) S (s Yoxs Yonn)
(n*%X’u,n*%Z’MXu,n*%X’V, n*%Z’MXV) = (Uxu, Usu, Uy, Uz,
Define
07 = lim % Yoe D weug 2 2

n—0o0

oz =lim L3735, Z;V iz

n—0o0
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T 1 ’
Oxy =1lim =3 > uu X, X,

n—o0

oxy =lim 1373, X,V VX,

n—o0

1 1
o 1 n e L N A
Pz —T}Lnool n D1 Qa1 Vi O gy Oy Zg s

1 1
—lim LS n ! “3l s
Py = lim n Et:l Zs:l ‘/22 XtO_ZU 0z, XSU'S

n—0o0

where Z;- is the projection of Z; onto X, i.e. it is the transpose of the {™ row of Z+ = Mx Z.

Then,

~ 1 1
L o—652= 075 (A+ »2’1))71 Ozuzy With A =0,2 5" G, where 2z, = z,p, + (1 — pr’Z)% ¢, and
(U@C (ZU) 75) ~N (07]k2(k2+1)> )

2. Tn addition, with (4.4) , v/ (E — ﬂ) S [oxumu + (g G+ Sy H + 0xomy) 5], where
1
Ly = 37me + <]k1 - mem) ° C? and (U@C (ajv) JC) ~ N <07 ]kl(k2+1)> .

Several aspects of this result can be pointed out, all the outcome of the poor identification of
0. First, the IV estimator of 6 does not converge to the true value of the population parameter 6.
Rather, it will converge to a random variable in the limit, as in Phillips (1989). Second, the limit
distribution is the ratio of correlated normal random variables. This suggests that the distribution
will, in some cases, have Cauchy-like behavior with thick tails and possibly bimodality. Moreover,
the distribution depends on nuisance parameters A, and p, making inference difficult. As A — oo,
= will approach the usual normal distribution. The distribution of the coefficients on the exogenous
variables z, is contaminated by the poor identification of §. Specifically, the usual standard errors
will understate the true uncertainty as these are based on the first term of the limit distribution only.
This will lead to over-rejection of the hypothesis Hy : 8 = 3.

The basic distribution theory described above is very closely related to that derived by Staiger and
Stock. Some adjustments have to be made, however, because we do not assume that the instruments,
7y, are independent of the error terms u; and v;; we only assume that they are uncorrelated. The

adjustments allow for higher order dependence between Z; on the one hand and u; and v; on the
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other. In cases where there is no higher dependence between the instruments and the error terms,
this distribution coincides with that derived by Staiger and Stock.

The assumptions on the properties of the data are given in terms of high-level conditions, a joint
weak law of large numbers and a weak convergence result. This is done to make the conditions similar
to those used by Staiger and Stock. Many sets of primitive conditions can lead to these two results.
For example, sufficient conditions are that the vector (u, V;) be a martingale difference sequence with
respect to the filtration {(ut,j,l, Viej1: Z1—j, Xo—j) g > 0} with uniform finite (2 4+ 1) moments for

K

some 7 > 0 and the vector (Z;, X;) be a-mixing with mixing numbers of size ——*= and (r + k)finite

moments for some r > 2. Unfortunately, these conditions imply that in the variance case, Z; = o2,

we need o° to be finite for all ¢. This is a very difficult requirement for financial data as there is
evidence that many financial series do not even have four finite moments. For this reason, we will
use highly aggregated data (for example monthly and quarterly data) for applications to financial
data.

4.1. Inference

Recent work by Wang and Zivot (1998) and Zivot, Startz and Nelson (forthcoming) has shown
how unreliable inference can be in the Staiger and Stock framework. In particular, they show that
confidence intervals based on Wald statistics tend to be too narrow, thus leading to overrejection.
Rather, these authors recommend the use of confidence intervals obtained from inverting LM statistics
and the Anderson-Rubin statistic in the case where the model is overidentified.

Use of the asymptotic theory developed in the previous section is hampered by the presence of
the nuisance parameters, A and p, which cannot be consistently estimated. As Wang and Zivot
(1998) have noticed, in the case of just-identified models as is the case here, if we use the restricted
estimate of 0, test statistics will have a limiting x? distribution. In over-identified models, these
test statistics will be bounded from above by a x? (K) distribution where K > ko is the number of
instruments. Thus LM statistics will be appropriate if our concern is to control the size of the test
and construct asymptotically valid confidence intervals.

The LM confidence intervals can be obtained as the set of § such that the LM test statistic does

14



not reject the null hypothesis. Zivot, Startz, and Nelson (forthcoming) have shown that inverting
the LM statistic for ¢ involves solving a quadratic equation. The shape of the resulting confidence
interval will vary: it could be a bounded set, the union of two unbounded intervals, or the entire real
line. These are quite unusual in shape. The possibility that confidence intervals could be unbounded
reflects the great uncertainty about the parameter of interest. Dufour (1997) has shown that a valid
(1 — «) confidence interval for a locally unidentified parameter will be unbounded with probability
(1 — «) . Since Wald intervals are always bounded (being constructed by adding and subtracting two
standard errors to the point estimate), they cannot provide valid inference in this type of model.
Unfortunately, these Wald intervals are almost always used in practice.

In our case here, we need to adjust the LM statistic for the higher order dependence. This is

done in the following proposition for our just-identified case:

Proposition 4.2. Let g = %Z’MX (y — }?6) . Then under the null hypothesis, Hy : 6 = 69, LM =

ng'o,lg 5 X2 (ko) .

Unfortunately, in this case, there is no easy way to write the inequality that defines the confidence
intervals as a quadratic equation in é. Confidence intervals must be computed numerically by defining
a grid of ¢ and verifying for each point on the grid whether the LM statistic defined in the above
proposition is less than the appropriate critical value from the x? (kq) distribution. This method is
easily implemented in the scalar case, but could hardly be carried out in high dimensions.

Another approach to obtaining confidence intervals, suggested by Staiger and Stock (1997), is to
use the Anderson-Rubin statistic. It is usually defined as the F-statistic for the significance of 6" in
the regression

y—Y6=XB"+ 26 +u"
where " = g+ T (6—60), 8" =I1(6 — bp), and u* = u+ v (6 — ) . Since we have a case with
heteroskedasticity, we need to use robust standard errors to compute the test statistic. It turns out
that in the just-identified case, this statistic is identical to the above LM statistic. This fact is stated

in the following proposition:
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Proposition 4.3. Let AR = né* V16" where V = Y 27 0%u E;Z . Then, under the null hypothesis
H():(s:(S(), AR:LM

The above propositions thus give us two equivalent ways to construct asymptotically valid confi-
dence intervals. The two methods are exactly the same as long as the same estimate of 7z, 1s used
to construct either LM or AR. The performance of these intervals in a small sample situation will

be analyzed in the simulation experiment in the next section.

5. Simulation Results

In this section, the behavior of the procedures described above will be analyzed through a small sim-
ulation experiment. Important issues to be analyzed include the choice of smoothing parameters, the

appropriateness of the various confidence intervals, and the distribution of the resulting estimators.

Consider the GARCI-M(1, 1) DGP:

Y = Y4602 +e=v+607+ 05
‘7? = w_l_ae?fl_l_ﬂgffl

& ~ iid.N(0,1)

In terms of the above notation, we have v, = €2 — 02, u; = ¢, — Sy, Yy = €2, and 7, = o?.

The various parameters are set to the estimates obtained from an identical GARCH-M(1,1)
model for the S&P 500 data which are v = —0.0094, (w,a, 3) = (1.44 x 107*,0.0659, 0.8546) , and
0 = 6.6764. These point estimates are similar to those usually obtained in this context, for example
by Glosten, Jagannathan, and Runkle (1993), and will lead to a rather persistent o? and to a weak
instrument. Throughout, samples of 450 are drawn, with the first 50 observations deleted to remove
the effect of the initial condition (taken as the mean of the unconditional distribution). The length
of the sample nearly matches that of the S&P data.

One disadvantage of the current setup is that the correlation between &; and é2 cannot be
controlled. We can control the correlation between the unobservable variables, but due to estimation,

the correlation between observable variables will be different in general.
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The values of the nuisance parameters in this setup can be obtained in terms of the moments of

the conditional variance process as:

om = (k= 1) | B (0F) = 28 (02) B (0f) + B (0)" E (o))
om = S0z + B (0f) =28 (02) B (0f) + B (0)" = 28k |E (0]) = 2B (07) E (07) + E (0}) E (0}
Ouy = KaF (0?) — 60 4,

- ﬁ[Ew;‘)l—E(o?)Q}

2
O_ZU

where k; = I (5%) is the j* moment of &;.

The values of the first 4 even moments of o? are derived recursively in Bollerslev (1986) as
a function of w, «, and 3 and the moments of ;. This allows for the easy computation of the
nuisance parameters. For the values given above, these parameters are A = 2.145, p = —0.472,
0z, = 3.404e — 12, and 0z, = 6.819¢ — 10. The population R? between e? and o7 is 2.77%.

Figure 6 shows a plot of the asymptotic distribution using the above estimates of the nuisance

parameters and that of the normal distribution obtained under the usual asymptotic theory, namely

~ 1 NN
Vi (6 B 6) SN <0’ ZZY 2 (ZZY) >
where ) :7}5(20 %Z’ MyxY. All quantities are normalized as t-ratios; this makes the usual normal
theory above the standard normal. The figure is drawn with 100,000 draws taken from each distribu-
tion. The weak instrument approximation is slightly skewed, but its main feature is the much fatter
tails than those of the standard normal distribution. The mass points at -10 and 10 represent the
mass that lies outside of the [—-10, 10] interval.

Figure 7 shows the same picture for n = 5000. Since the weak instrument approximation ap-
proaches the standard normal as n — 00 in this case because A — oo, we see that both the skewness
and the excess kurtosis are much reduced for this sample size.

Figure 8 shows the distribution of the infeasible IV estimator using the actual values of o2 and

e? generated; this estimator is infeasible since these values are unobservable in practice.  This

experiment was repeated 20,000 times. The asymptotic approximation captures most of the features
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of the finite-sample distribution of the IV estimator. It matches the two tails well but overestimates
the mass in the middle of the distribution. The usual normal approximation does not capture the
tail behavior at all and does not do better in the area around the peak of the distribution.

The results of all simulation experiments are summarized in tables 4-10. The first column of each
table shows the median of the IV estimator (rather than the mean because of the heavy tails of the
distributions). The next two columns indicate the coverage rate of the appropriate 95% confidence
intervals. The last column contains the mean R? of a regression of €2 on a constant and 7.

The first line of these tables reports results of the infeasible estimator discussed above. The IV
estimator appears slightly biased upward as expected given the skewness observed in figure 8. The
Wald confidence interval has a coverage rate that is much lower than its nominal level, while the
LM interval has coverage rate that is only slightly too low. The under-coverage of the Wald-based
confidence intervals is expected given the theoretical results that these should have zero coverage
asymptotically and the heavy tails of the distribution in figure 8. A researcher using these intervals
would over-reject the null hypothesis Hy : 6 = 69 when it is true.

For the remaining experiments, estimates of €2 and o? are necessary. As before, these are obtained
in three ways. The first one is a kernel-based estimator with a multivariate Gaussian kernel and
with bandwidth selected according to the rule by = cgknfpﬁ, where p is the number of conditioning
variables (taken to be lagged values of y;), 5 is the sample standard deviation of the k" conditioning
variable, and ¢ is a constant. Three values of ¢ were used: 0.5, 1, and 2. These are the same choices
as those used to obtain the values presented in table 1 above. The second estimator is based on
artificial neural networks with one hidden layer and logistic and identity activation functions. The
number of nodes are set at 2, 4, and 8 as was done in the construction of table 2. Finally, the last
estimator is the Engle-Ng estimator used in the construction of table 3 with 2, 4, and 8 bins. Fach
experiment was repeated 1000 times.

The need to estimate o2 and e€? changes the result quite dramatically relative to the infeasible
estimator. The results using the kernel estimates are presented in tables 4-6 and figures 9-11. In
all cases, the estimator of ¢ is strongly biased downward, but this bias goes down as the bandwidth

increases. In general, a small bandwidth is preferable in semi-parametric estimation as it leads to less
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biased but more variable non-parametric estimates that get averaged in the second step. However,
additional smoothing is appropriate in this case because we need to keep the conditioning set small
despite the high persistence. This finding is consistent with the results in Perron (1998). Surprisingly,
the Wald intervals have in general better coverage than their LM counterparts. However, the coverage
rate of LM intervals improves substantially as the bandwidth increases.

The figures explain this phenomenon. The kernel estimator is not a very good estimator of the
conditional variance in this case as it does not capture persistence well. Hence, the finite sample
distribution of & is nowhere near the one obtained by using the infeasible IV estimator. However,
this situation improves with a larger bandwidth, and this explains why the results approach those
obtained using the infeasible estimator as the bandwidth increases. Nevertheless, all distributions
are heavily skewed to the left and are not well summarized by any asymptotic approximation.

The results using the neural networks are presented in tables 7-10 and figures 12-14. The distri-
bution of the estimator of ¢ is well-centered with p = 1. With more than one lagged value in the
conditioning set, however, the estimator is biased downward. The two sets of confidence intervals
have coverage rate that is too low, but the LM intervals perform much better. In fact, with p = 1,
the coverage rate of the LM intervals is almost correct. the The weak instrument approximation
does not provide a very good approximation to the finite-sample distribution of the estimator due to
the bias, but of course neither does the usual normal theory.

Finally, the results for the Fngle-Ng estimator are presented in table 7 and figure 15 for p = 1.
The results provided by this method are excellent. The bias in the estimation of the risk parameter
is small (but slightly negative). Once again, the LM-based confidence intervals perform better with
a coverage rate that is close to their nominal level of 95%. The asymptotic approximation provided
by the weak instrument theory is excellent. Moreover, there is only slight sensitivity to the choice of
the smoothing parameter. The distributions with 2, 4 or 8 bins are essentially indistinguishable in
the figure.

It would thus appear that only the Engle-Ng procedure provides a good approximation to the
conditional variance as it leads to an IV estimator with a distribution that is close to that of the

infeasible IV estimator. The other two (as well as other non-parametric estimators such as nearest
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neighbors or local polynomials) face the disadvantage that they must be made conditional on a small
information set. In theory, neural networks do not suffer from the curse of dimensionality and could
be estimated conditional on a much larger number of lagged values. In practice, this is difficult as the
optimization becomes more problematic, and the performance does not seem to improve remarkably.

Thus, the results above suggest extreme caution when using estimated instruments and explana-
tory variables in instrumental variable regression. It however appears that inference can be done
robustly by using LM confidence intervals and using the semi-parametric estimator of the condi-
tional variance. Once the conditional variance is estimated, the approximation provided by the weak

instrument distribution is much superior to that provided by the usual normal approximation.

6. Empirical results

In this section, we will analyze our three financial data sets to seek evidence of a risk-return trade-off.
To reiterate, the series are monthly returns on the S&P 500 index, quarterly excess holding yield
between 6-month and 3-month Treasury bills and monthly returns on the yen-dollar spot rate.

For each series, we postulate a model of the form
Y = ﬂ/a?t + 50? + €

with z; being a vector of explanatory variables specific to each series and 0? = F [{yt — B [y Fi 1] }2 ].7'},1}
where F; 1 is the information set used by the agents in forming the corresponding expectation.

For both series, the conditional variance was estimated using each of the three methods discussed
above: kernel, neural networks, and the Engle-Ng estimator described above. We only report the
results using he kernel estimate with a bandwidth constant of 2 since this value reduced the bias in
the estimation and provided confidence intervals with better coverage in the simulation experiment,
neural networks with 4 nodes, and the Engle-Ng estimator with 4 bins. Results for the other choices
are available upon request.

The LM confidence intervals were computed by numerically inverting the LM statistic. A grid of
1000 equi-spaced points between -100 and 100 was used for this purpose. For this reason, the infinite

or very large confidence intervals got truncated at these two endpoints.
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6.1. Stock returns

The first series represents monthly excess returns on the S&P 500 index between January 1965 and
December 1997. The data is taken from CRSP, and the risk-free rate is the 3-month Treasury bill rate.
The trade-off between risk and return has been extensively studied for similar series with conflicting
results. For example, French, Schwert, and Stambaugh (1987) find a positive relation between
returns and the conditional variance, while Glosten, Jagannathan, and Runkle (1993) find a negative
relationship using a modified GARCH-M methodology. This conflicting evidence is not surprising in
light of the results obtained by Backus, Gregory, and Zin (1989) and Backus and Gregory (1993).
Using a general equilibrium setting, they provide simulation evidence that the relationship between
expected returns and the variance of returns can go in either direction, depending on specification.
The estimation results are presented in table 11. In addition to the point estimates and the
robust t-statistics, we present Wald-based and LM-based 95% confidence intervals for the coefficient
on the risk variable, §, as well as the partial &2 between 5? and €2. The results are unambiguous on
the presence of a relationship between the excess returns and the conditional variance. In all cases
but one, there is no significant effect of risk on returns. The only exception is the kernel estimator
with 3 lags which shows a significant positive relationship using the Wald inference. However, the
main feature of the results is the much wider confidence intervals obtained using the LM principle.

Wald confidence intervals dramatically understate the uncertainty of the estimated parameters.

6.2. Excess holding yield

Following Engle, Lilien, and Robins (1987), the excess holding yield between 6-month Treasury bill
and 3-month Treasury bill is defined as:

(1R
e R

where R, and r, are the yield on the 6-month and 3-month T-bill between ¢ and ¢ 4 1 respectively.
Quarterly data between the first quarter of 1959 and the first quarter of 1998 is used. A similar
(and shorter) series has been studied by Fngle, Lilien, and Robins (1987) and by Pagan and Hong
(1991). The first paper applied the ARCIH-M methodology, while the second one used the above
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semi-parametric instrumental variable estimator. A plot of the data is provided in figure 3.

The results of the estimation are presented in table 12 for lag lengths between 1 and 3. The
variables included in the vector of exogenous and predetermined variables x; include a constant, and
the interest spread R, — r;. All point estimates are positive with the exception of the kernel with
one lag. Three cases show a significant relationship using Wald inference. In these three cases. the
LM intervals are very wide and reverse the conclusion. In fact the LM intervals are much wider than
their Wald counterparts in all cases.

Also note that the interest spread is significant at the 5% level using standard testing procedures
in all cases but one. This is to be expected given the second part of theorem 4.1 as the usual
standard errors understate the level of uncertainty associated with the estimators of the coefficients

of the exogenous variables.

6.3. Yen-dollar exchange rate

The other data series considered consists of monthly returns on the yen-dollar spot exchange rate
between September 1978 and June 1998. This series is plotted in figure 4. The returns are assumed
to depend on the differential between Japanese and U.S. interest rates as postulated by the uncovered
parity condition, as well as their own lag values. The interest rate used is the 3-month LIBOR offer
rate. The data was obtained from the IFS CD-Rom.

The results from the estimation are presented in table 13. Once again, few confidence intervals
show a statistically significant risk premium term. The only exceptions are the neural network with
2 lags which shows a significantly negative relation and 3 cases where the LM intervals take the
unusual disjoint shape. The Wald confidence intervals are already wide, but the LM intervals are
even wider. The partial R? between estimated squared innovations and the estimated conditional
variance is much lower than for the excess holding yield as was documented in tables 1-3.

Note that the coefficient on the interest rate differential seems quite precisely estimated between
-3 and -4 for all specifications and is significantly negative using standard testing procedures. Many
studies using the uncovered interest rate parity condition find such a significantly negative coefficient

on the interest differential (see Froot and Thaler (1990) for a survey of the literature). The inclusion

22



of the variance term does not change the results much, neither does the inclusion of monthly dummies.
This is also true for the GARCH-M specification. In this latter case however, the risk premium term
is significantly positive. However, this significance has to be taken with care given the second result

of theorem 4.1.

7. Conclusion

This paper follows several others in showing that inference using instrumental variables is greatly
affected by a low correlation between the instruments and the explanatory variables. It extends the
current literature to linear semi-parametric models with non-parametrically estimated regressors and
instruments and to cases with higher-order dependence. The analysis shows that the limit theory in
this case is similar to that currently available in the literature.

Simulation evidence reveals that the additional step of estimating both the regressor and the
instrument may lead to a large loss in the quality of asymptotic approximations. Using a semi-
parametric estimator proposed by Engle and Ng (1993) and carrying out inference using Lagrange
Multiplier procedures allows for inference that is more robust than the alternatives considered here.

Empirical application to three financial series suggests that conclusions may hinge on the use
of appropriate confidence intervals. Using the appropriate LM confidence intervals and the semi-
parametric estimator of the conditional variance leads us to conclude that none of the series considered
includes a statistically significant risk premium. This differs in many cases from inference based on
the usual Wald confidence intervals and on a parametric GARCH-M model. However, because of
the wide confidence bands, the results are also consistent with the presence of large risk premia.
The data is simply not informative enough to precisely estimate the relationship between risk and
returns.

Further work on this problem is clearly warranted. In particular, other estimators such as max-
imum likelithood are likely to face similar problems as the IV estimator analyzed here. Moreover,
Bayesian methods might be helpful in this case as a prior distribution on the reduced form coefhi-
cients is intuitive. Finally, the development of data-based selection procedures for the smoothing

parameters appears important given the sensitivity of the results to this choice.
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8. Appendix

1. Proofs

1.1. Preliminary results

Before proving the various theorems, we will collect the required preliminaries in the following lemma.
Lemma 1.1. Suppose the conditions of theorem (4.1) hold. Then, the following hold:

n

(2’MX}7) = = (Z'MxY) + 0, (1)

s

2. L [Z’MX (Z—-Y) 5} = L [Z'Mx (Z-Y) 8] +0,(1)

B

(Z’Mxe) = L (Z'Mxe) + 0, (1)

<

n

=~
3=
TN

Z’MXZ) = L(Z' My Z) + o0, (1)

5. J=X'Y = J=X'Y +0,(1)
6. <= |Z'My (Y—}?)é} 20

7. L (Z’qu) =Ty, +o0,(1).

B

Proof. To prove the first result, note that

%Z’fo/ - \/LE(Z—Z)/MX(}A/—Y)+\/LE(Z—Z)/MXY
+\/LEZ’MX (Y — 57) + %Z’MXY
— (2 2) [vin (Y—}?)}—I—\/Lﬁ(z—Z)/MXY
iz [Vam (7 -v)] + %Z’MXY
— \/LEZ’MY%—Et l(i— Z)/ [ﬁMX (Y—}?)H + % (2— Z)/MX Y - 2)
+\/Lﬁ (2—2)’MX[Z—E<Z>]+%(2—2)/MXE<Z>
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VB (72— E(2) [ﬁMX (f/ - Y)H o [E (2) [ﬁMX (57 - Y)H +o, (1)

1
= \/_EZ/MY‘I‘Al+A2+A3+A4+A5+A6+Op<1)

We will next bound each of the A;, i =1,...,6. Let |A| be the matrix norm of A. First,
~ / ~
14, = ‘Et l(z - Z) [ﬁMX (Y - Y)H ‘
2| | [vase (v - 7))

= 0,(1)

IA

by assumptions 1 and 2 where the second line follows from the fact that both Y and Y are measurable

with respect to F; and the triangle inequality. Next,

4l = |22 (Z2-2) e v - 2)
< ‘Z Z” My (Y — Z)‘
= o)

by assumption 2 and since the quantity inside the second absolute value will be O, (1). The third

term is:
4 = |52 (2-2) Mxlz- £(2)]
< ‘Z Z” My [Z — E(Z)]‘

= o)

again by assumption 2 and the term inside the second absolute value being O, (1). The fourth term

can be bounded as:

1A, = ‘% (2— Z)/MXE (Z)‘
< % (Z—Z)‘ My E (2)]
= o0,(1)



as Z & 7 and |E (Z)| < oo with probability one since Z; < oo for all t. The fifth term is:
sl = |B |z = B @) [Vadx (V=Y)]]
< |Z-E(2) ‘Et Vi (V- v ‘
= 0p(1)-0,(1)

= o0, (1)

by assumption 1. Finally, the sixth term can be bounded as:

ol = [ v (7))
< |B@) | [vamx (7 -Y)]]
= o0,(1)

by assumption 1 and the fact that |F (Z)| < oo with probability one. Thus,

as required.

The second result is obtained as:

7'My (7 —Y) 5} —

-

T

where the last line follows from:

1 a0y - 1
‘T(Z—Z) MX(Z—Y)é‘ < ‘Z—Z”—MX(Z—Y)(S‘
T

The third result follows from:

%ﬁ [(2 — Z)}/ Mye + %Z’Mxe
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and noting that the first term can be bounded by:

‘% [(2— Z)}’Mxe < ‘Z— Z‘ ‘%Mxe
= 0,(1)- Oy (1)
= 0,(1)

by assumptions 2 and 4.

The fourth result is proved by rewriting the left hand side as:

1~ 1/~ SO _
“TML = = (Z— Z) MyZ +~2'MyZ
mn mn mn
1, 1/~ / _ 1/~ / 1 _
_ —ZMXZ+—(Z—Z) MX(Z—Z)+—(Z—Z) MXZ—I——ZMX(Z—Z)
mn mn mn mn

1 '
= —Z'MxZ+ By + By + B,
n

where B;, 7 = 1,2, is each bounded in turn by an o, (1) term. For Bj, we obtain:

1 /5 ! =
B = —(Z—Z) My (Z—Z)‘
n
< |2 (2 Z)/ M| | = ’(2 Z)
— |Vn N
= 0,(1)
by assumption 2. The second term is bounded as:
1 —~ I
1By| = —(Z—Z) MXZ‘
n

< ‘Z—Z‘ ‘lMXZ‘
mn

= 0Op (1)'010 (1)

= 0p<1)

by assumption 2. The fourth result follows.
The fifth result is obtained as:

1 - 1 1 N
XY = —X'Y 4+ —X (Y _ Y)
N Vn * Vn
1
= WX/Y —I— Op (1)
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by assumption 2.

The sixth result is obtained from the decomposition:

o= (70 (v =9) )| = | 2| (2 2) b (v = 7)o | 4 = 200 (v = 7))
< [l (-7
+‘\/LE[Z—E(Z)]’MX [(Y—}?)} 5‘
o @) bix VA (v - 7)) 4
<

‘Z— Z‘ ‘Jiﬁb (Y —37) 5‘
o= (y_?)(s\
+|E(2)| ‘%L (Y —f/) 5‘

= 0,(1)

1% = E(Z)]

where the last line follows from %L/ (Y — }A/) 2B, [\/EU (Y — }A/)} £0.
Finally, the last result is obtained by rewriting the left hand side as:

1 5 1 5 1 5 - 1 5
\/_EZ/MXU = WZ/MXG + \/_EZ/MX (Y — Y) 6 + \/_EZ/MX (Z — Y)(S

and using results 2, 3, and 5 of the lemma. W
1.2. Proof of theorem 4.1
The instrumental variable estimator of ¢ is
~ ~ ~N\ 1 ~
-6 = (Z’MXY) 7' Myu
= (Z'MxY) " Z'Mxu + o0, (1)

by results 1 and 7 of the lemma. To derive the asymptotic distribution, we can handle the inverse

term as:

_ (7 MyY) = %[Z’MX (ZTL+ V)]
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1
while \/— (7' Mxu) <, V,, = 04,%, by assumption. Putting these pieces together gives us the desired
result for the distribution of 8 :

564

[

To derive the distribution of @, note that:
Bo= (X)X (y-79)
— B+ (X'X) XY (5 - 3) F(XX) T X

A(p-9) = (55) () -9) (5%)
- <TX> () =9+ (57) Teow

ZXX (Z +Z H_I_@XU) E+ZXX Yxu

where the term in parentheses is derived from:

1 1
—XY = —=X'(ZI+XT'+V
N N (ZII4+ XT + V)
1 1 1
= —X'7ZG+=-X'XH+—=X'V
n n

N
iZXZGJrZXXHJrLI:XU

so that

by assumption. W

1.3. Proof of Proposition 4.2

By result 7 of the lemma, \/ng 2y Zu N (0,0 z4) under the null hypothesis. Standard arguments
show the desired result, ng'o g R (ko). M
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1.4. Proof of Proposition 4.3

The estimator of §" is defined as:

~

~ ~\ 1 o~ ~
& = (Z’MXZ) 7' My (y . Y(SO)
~ ~\ —1 ~
_ (Z’MXZ) 7'My (Xﬂ* + 28 utv(— 50))

~ -1~ ~ -1
= &+ (Z’MXZ) Z' Mxu + (Z/MXZ) Z'Mxv (6 — o)

so that

~ ~\ —1 ~ ~ ~\ —1 ~
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o -1 A
. Z/MXZ Z/MXU,
B n vn

under the null hypothesis. By results 4 and 7 of the lemma, \/n ((?‘ — (5*) —- N (0, E;Z O 74 E;;) .
The robust AR statistic is:

-1

RN o~ N1 " . 1]t
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~ ~\ —1 ~
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after simplification with oy, estimated under the null. B
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Table 1. R? from regression of €2 on 0}

Kernel-based estimates

Bandwidth is b = 8T 71

2

c=05 1 2
S&P 500 returns | p=1| 0.001 0.000 0.061
1965:1-1997:12 2| 0.000 0.001 0.085

31 0.012 0.041 0.077

Yen-dollar returns | p=1| 0.022 0.004 0.026
1978:10-1998:6 2| 0.000 0004 0.003
3| 0.011 0.004 0.005

Excess holding yield | p=1| 0.016 0.004 0.170

1959:1-1998:2 21 0.002 0.034 0.010

31 0.008 0.017 0.046

Table 2. R? from regression of €2 on 7.
Neural network estimates

number of nodes = 2 4 8
S&P 500 returns p=11]0.041 0.040 0.039
1965:1-1997:12 210.034 0.036 0.036
310.020 0.020 0.020
Yen-dollar returns p=11]0.010 0.019 0.025
1978:10-1998:6 210229 0.261 0.278
310.234 0.075 0.075
Excess holding yield p=110.006 0.006 0.006
1959:1-1998:2 210.032 0.031 0.032
310.002 0.002 0.002
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Table 3. R? from regression of €2 on 0}

Engle-Ng estimates

2

number of bins = 2 4 8
S&P 500 returns p=10.138 0.139 0.138
1965:1-1997:12 210.107 0.107 0.151
310.098 0.088 0.073
Yen-dollar returns p=110.015 0.022 0.031
1978:10-1998:6 210.003 0.001 0.001
310.004 0.001 0.000
Eixcess holding yield p=11]0.124 0.125 0.114
1959:1-1998:2 210.350 0.338 0.259
310.152 0.142 0.148

Table 4. Simulation results

GARCH parameters from S&P 500 data

Kernel-based estimate of the conditional variance

p=1
Bandwidth Median Coverage rate of 95% CI | First-stage
constant | IV estimator | Wald LM R? (%)
Actual 7.865 79.1 94.0 2.19
0.5 0.427 92.2 81.2 5.29
1 1.230 90.5 92.2 3.12
2 2.214 81.4 93.0 2.09
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Table 5. Simulation results

GARCH parameters from S&P 500 data

Kernel-based estimate of the conditional variance

p=2
Bandwidth Median Coverage rate of 95% CI | First-stage
constant | IV estimator | Wald LM R? (%)
Actual 7.865 79.1 94.0 2.19
0.5 -0.186 99.1 53.6 24.63
1 0.586 96.9 77.9 11.07
2 1.873 92.4 91.7 5.37

Table 6. Simulation results

GARCH parameters from S&P 500 data

Kernel-based estimate of the conditional variance

p=3
Bandwidth Median Coverage rate of 95% CI | First-stage
constant | IV estimator | Wald LM R? (%)
Actual 7.865 79.1 94.0 2.19
0.5 -0.665 92.9 74.9 51.50
1 0.334 98.9 65.7 22.61
2 2.144 97.2 89.2 9.75
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Table 7. Simulation results

GARCH parameters from S&P 500 data

Neural network estimate of the conditional variance

p=1
Number Median Coverage rate of 95% CI | First-stage
of nodes | IV estimator | Wald LM R* (%)
Actual 7.865 79.1 94.0 2.19
2 6.449 51.2 95.5 0.35
4 6.938 51.4 93.8 0.36
8 6.258 53.7 93.5 0.33

Table 8. Simulation results

GARCH parameters from S&P 500 data

Neural network estimate of the conditional variance

p=2
Number Median Coverage rate of 95% CI | First-stage
of nodes | IV estimator | Wald LM R* (%)
Actual 7.865 79.1 94.0 2.19

2 1.219 60.9 79.6 0.57

4 1.031 61.1 80.6 0.52

8 1.556 62.4 81.6 0.40
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Table 9. Simulation results

GARCH parameters from S&P 500 data

Neural network estimate of the conditional variance

p=3
Number Median Coverage rate of 95% CI | First-stage
of nodes | IV Estimator | Wald LM R% (%)
Actual 7.865 79.1 94.0 2.19
2 1.061 56.5 82.6 0.59
4 0.746 56.8 85.1 0.46
8 1.404 53.4 86.5 0.34

Table 10. Simulation results

GARCH parameters from S&P 500 data

Engle-Ng estimate of the conditional variance

p=1
Number Median Coverage rate of 95% CI | First-stage
of bins | IV estimator | Wald LM R* (%)
Actual 7.865 79.1 94.0 2.19

2 6.213 82.4 94.5 2.26

4 5.713 86.2 95.5 2.63

8 6.039 86.7 95.5 2.69
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Table 11. Estimation results
S&P 500 returns, 1965-1997, robust ¢-statistics in parentheses

Estimator p=1 p=2 p=3
constant 0.25 —0.14 —1.15
(x1072) (0.63) (~0.39) (—2.29)
Kernel €2 —0.40 1.62 6.92
(—0.20) (0.99) (2.63)
(c=2) Wald 95% CI [—4.4,3.6] [—1.6,4.8] [1.8,12.1]
LM 95% CI | [-100,—14.6] U [—7.6,100] [—100,100] [—100,100]
1st stage R? 0.061 0.085 0.077
constant 0.27 0.09 0.10
(x10-2) (0.39) (0.15) (0.12)
Neural network €2 —0.45 0.38 0.42
(—0.14) (0.14) (0.10)
(4 nodes) Wald 95% CI [—6.9,6.0] [-5.1,5.9] [-7.8,8.6]
LM 95% CI [—14.6,6.0] [—55.0,7.0] [—100,100]
1st stage R? 0.040 0.036 0.020
constant 0.17 0.16 —0.04
(x10-2) (0.60) (0.49) (—0.12)
Engle-Ng €2 —0.01 0.05 1.10
(—0.01) (0.04) (0.64)
(4 bins) Wald 95% CI [—2.5,2.5] [—2.8,2.9] [-2.2,44]
LM 95% CI [—100, 100] [—100,100] [-39,6.4]
1st stage R? 0.139 0.107 0.088
constant —0.94
(x10-2) (—0.84)
GARCH-M(1,1) ez 6.68
(1.04)
Wald 95% CI [—6.2,19.54]
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Table 12. Estimation results

Excess holding yield, 1959:1-1998:2, robust ¢-statistics in parentheses

Estimator p=1 p=2 p=3
constant 0.45 —1.07 —0.23
(x1073) (1.92) (~0.65) (—0.37)
Kernel spread 1.50 1.98 1.79
(6.31) (2.17) (4.23)
(c=2) €2 —24.56 119.25 34.63
(1.22) (0.85) (1.01)
Wald 95% CT | [-38.9,—10.2] [—155.1,393.6] [—32.6,101.8]
LM 95% CI [—100, 100] [—100, 100] [—49.6,99.8]
1st stage R? 0.167 0.008 0.041
constant —6.79 —6.18 —2.48
(x10-3) (—5.67) (—6.77) (—0.61)
Neural network spread 0.46 0.57 1.20
(2.50) (3.72) (1.82)
(4 nodes) €2 21.21 19.40 8.11
(6.11) (7.50) (0.65)
Wald 95% CI [14.4,28.0] [14.3,24.5] [—16.2,32.4]
LM 95% CI [—100, 100] [—100, 100] [—100,17.8] U [23.8,100]
1st stage R? 0.042 0.090 0.020
constant 0.01 0.05 —0.02
(x10-3) (0.03) (0.25) (—0.07)
Engle-Ng spread (16.53 (1758 (16..?98)
(4 bins) €2 9.27 6.81 8.34
(1.18) (0.59) (0.73)
Wald 95% CI | [—6.1,24.6] [—15.6,29.3] [—14.2,30.8]
LM 95% CI [—100, 100] [—100, 100] [—100, 53.0]
1st stage R? 0.125 0.338 0.142
constant 0.03
(x10-3) (0.29)
GARCH-M(1,1) spread 1.30
(4.74)
€2 1.4
Ct-1 E22.78;)
Wald 95% CI [14.4,88.4]
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Table 13. Estimation results

Yen-dollar returns, robust t-statistics in parentheses

Estimator p=1 p=2 p=3
constant —0.02 —0.03 —0.03
(—2.22) (~1.99) (—1.98)
differential —4.19 —4.51 —4.37
(—4.40) (-3.77) (-3.67)
Kernel 2 6.95 19.96 15.54
(0.69) (1.19) (1.07)
(c=2) Wald 95% CI [—12.7,26.6] [—12.9,52.8] [—13,44.1]
LM 95% CI [—20.6,89.8] [—9.2,100] [—8,100]
1st stage RR? 0.026 0.008 0.012
constant —0.06 0.02 0.01
(-1.61) (1.09) (0.57)
Neural network differential 2.84 —4.09 —4.46
(0.48) (—4.40) (—4.04)
(4 bins) é? 55.00 —0.28 —1.00
(1.27) (~1.97) (~1.29)
Wald 95% CI [—29.8,139.8] [—0.6,0] [—2.5,0.5]
LM 95% CT | [-100,—69] U [18.8,100] [—0.6,—0.2] [—3.8,0]
1st stage RR? 0.008 0.321 0.115
constant 0.02 0.17 0.00
(0.60) (0.34) (0.04)
differential —3.05 —1.38 —3.48
(~1.80) (-0.11) (-3.17)
Engle-Ng é? —33.26 —218.11 —14.95
(—1.04) (—0.38) (—0.34)
(4 bins) Wald 95% CI [—96.3,29.7] [—1354.9,918.7] [—102.1,72.19]
LM 95% CI [—100,—9] U [33.6,100] [—100,—28.4] U [29.8,100] [—100, 100]
1st stage RR? 0.022 0.001 0.001
constant —0.01
(—6.27)
GARCIH-M(1,1) | differential —3.37
(—69.61)
& 1.95
(25139.67)
Wald 95% CI [1.95,1.95]
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Figure 1. Instrumental variable estimator
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